

Management of Bentgrass Cultivars for Improved Resistance to Microdochium Patch under Climate Change Conditions

Sara Stricker¹, Dr. T. Hsiang¹, Dr. A. Bertrand²

¹University of Guelph, Guelph

²Agriculture & Agri-Food Canada, Québec City

Climate Change

- Predictions of future climate change:
 - Increases in greenhouse gasses
 - Increase Earth's average temperature
 - Influence precipitation patterns
 - Reduce ice and snow cover
 - Increase the frequency, intensity, and/or duration of extreme events
 - Impact plant diseases?

"Better living conditions"

http://www.dagbladet.no/nyheter/sinte-snomenn-demonstrerte-for-kulde/66293013

Microdochium nivale

- Hosts include barley, oats, wheat, and coolseason turfgrasses
- Pink Snow Mold after snowmelt
- Fusarium Patch/Microdochium Patch

Guelph Turfgrass Institute, 2015

Canadian pesticide regulations

- Canadian pesticide regulations more vigorous than those in USA
- Ontario's Cosmetic Pesticide Ban, 2009
 - Prohibits use of pesticides in public spaces and for personal use (sports fields exempted)
- Quebec's Pesticide Code, 2006
 - prohibits the use of more than 100 pesticide products registered for use in the rest of Canada
 - Québec golf courses that apply pesticides are required to submit a pesticide reduction plan every three years.

Induced Systemic Resistance

 First discovered with rhizobacteria

Using a plant's natural resistance responses against:

- Abiotic stresses
- Insects
- Diseases
- Speed of recognition and response is key

Resistance Activator Products

 A synthetic chemical that is non-toxic to plants and fungi that, when applied to a plant, activates natural resistance responses

New plant tissue is protected systemically

Civitas + Harmonizer™

- Developed by Petro-Canada
 - Civitas: Food-grade isoparaffins
 - Harmonizer: Pigment dispersal product containing chelated copper
- Civitas increases the expression of resistance genes for efficacious control of diseases caused by:
 - Microdochium nivale
 - Rhizoctonia solani
 - Sclerotinia homoeocarpa

(Cortes et al. 2010)

Main Questions

- How will disease severity of bentgrass cultivars be affected by climate change?
 - Specifically increased CO₂
- How will the efficacy of Civitas + Harmonizer™ be affected by elevated CO₂?

CO2 Growth Chambers

Soils and Crops Research and Development Centre Québec City, Québec

Agriculture and Agri-Food Canada

Seeding

Creeping bentgrass (A. stolonifera)

- Alpha
- Penncross
- Tyee
- T
- Focus
- Independence

Colonial bentgrass (A. capillaris)

Leirin

Annual bluegrass (P. annua)

LaBelle (propagated)

Growth- 20°C day / 15°C night

Growth- 15°C day / 10°C night

Sampling

Activator Treatment

Activator Treatment

Inoculation

Inoculation

Percent vellowing of urfgrasses by ureatment 15 days post inoculation with M. Mivale

Results- Disease Suppression

Mean percent disease suppression where Civitas+Harmonizer was first applied and then *M. nivale* was inoculated 7 d later, and yellowing was rated several days after inoculation (dpi)

at two CO₂ concentrations

		400	ppm	_	800 ppm			
Cultivar	7 dpi	9 dpi	15 dpi	21 dpi	7 dpi	9 dpi	15 dpi	21 dpi
Alpha	-10 ^a	-21	48 ^b	38	0	53	50	10
Focus	11	15	33	6	36	72	80	66
Independence	-10	-23	73	23	18	46	94	-115
LaBelle	12.0	69	37	40	40	56	67	-58
Leirin	-17	32	92	21	5.9	-15	151	48
Penncross	-76	80	84	34	34	56	96	-30
T1	-112 b	74	79	45	4.2	38	89	21
Tyee	15	30	79	28	23	-16	79	51
Average	2	32	68	29	20	36	88	-0.8
Cultivar LSD (p=0.05)	94	82	38	102	58	76	37	85

^a Means were calculated as (Water treatment yellowing – CH treatment yellowing)/(Water treatment yellowing) where yellowing was adjusted for basal yellowing in the non-inoculated control, and are based on up to 8 replications for 7, 8 and 15 and 4 replications for 21 dpi

b Red shaded boxes are significantly less than 0, and Green shaded boxes are significantly more

Results- Disease Suppression

Mean percent disease suppression where Civitas+Harmonizer was first applied and then *M. nivale* was inoculated 7 d later, and yellowing was rated several days after inoculation (dpi)

at two CO₂ concentrations

	400 ppm				800 ppm			
Cultivar	7 dpi	9 dpi	15 dpi	21 dpi	7 dpi	9 dpi	15 dpi	21 dpi
Alpha	-10 ^a	-21	48 ^b	38	0	53	50	10
Focus	11	15	33	6	36	72	80	66
Independence	-10	-23	73	23	18	46	94	-115
LaBelle	12.0	69	(37)	40	40	56	67	-58
Leirin	-17	32	92	21	5.9	-15	(151)	48
Penncross	-76	80	84	34	34	56	96	-30
T1	-112 b	74	79	45	4.2	38	89	21
Tyee	15	30	79	28	23	-16	79	51
Average	2	32	68	29	20	36	88	-0.8
Cultivar LSD (p=0.05)	94	82	38	102	58	76	37	85

^a Means were calculated as (Water treatment yellowing – CH treatment yellowing)/(Water treatment yellowing) where yellowing was adjusted for basal yellowing in the non-inoculated control, and are based on up to 8 replications for 7, 8 and 15 and 4 replications for 21 dpi

b Red shaded boxes are significantly less than 0, and Green shaded boxes are significantly more

More Questions

Does elevated CO₂ and Civitas + Harmonizer have an impact on free amino acid and soluble sugar composition of grasses?

Waters ACQUITY UPLC analytical system

Totalaminoacidaconcentrationaorandependence

Amino acid concentrations by treatment

CO₂ Chambers Results-Carbohydrates

Carbohydrate content (mg/gDW) of creeping bentgrass cultivars under two CO₂ concentrations after 12 weeks of growth

	_	400 ppm				800 ppm				
		Indep	endence	Focus		Independence		Focus		
	Sugar	Non	Non Inoc		Inoc	Non	Inoc	Non	Inoc	
Water	Sucrose	5.9	6.7	9.6	6.5	16	4.4	9.4	5.2 *	
	Glucose	4.3	8.8 *	6.4	8.0	6.2	4.8	6.6	6.7	
	Fructose	3.7	6.1	4.9	4.7	5.3	3.1	4.7	4.0	
	Total SS	14	22	21	19	28	12	21	16	
	HPF	0.7	2.1	0.8	1.0	1.2	1.9	3.4	1.7	
	TNC	15	24	22	20	29	14	24	18	
C+H	Sucrose (5.3	7.2 *	14	17	7.0	4.5 *	6.9	5.2	
	Glucose	4.4	8.7	7.2	8.9	5.3	4.4	6.2	5.1	
	Fructose	2.9	5.2	4.7	5.9	3.7	3.2	4.8	3.3 *	
	Total SS	13	21	26	32	16	12	18	13	
	HPF	0.5	3.2	1.0	2.4	2.3	3.7	3.2	1.8	
	TNC (13	24 *	27	35	18	16	21	15	

*indicates significance at *p*<0.05 between NI and I treatments SS= soluble sugars, HPF= high degree of polymerization fructans, TNC= total nonstructural carbohydrates

CO₂ Chambers Results-Carbohydrates

Carbohydrate content (mg/gDW) of creeping bentgrass cultivars under two CO₂ concentrations after 12 weeks of growth

			400	ppm		800 ppm				
		Indepe	endence	Focus		Independence		Focus		
	Sugar	Non Inoc		Non	Inoc	Non	Inoc	Non	Inoc	
Water	Sucrose	5.9	6.7	9.6	6.5	16	4.4	9.4	5.2 *	
	Glucose	4.3	8.8 *	6.4	8.0	6.2	4.8	6.6	6.7	
	Fructose	3.7	6.1	4.9	4.7	5.3	3.1	4.7	4.0	
	Total SS	14	22	21	19	28	12	21	16	
	HPF	0.7	2.1	0.8	1.0	1.2	1.9	3.4	1.7	
	TNC	15	24	22	20	29	14	24	18	
C+H	Sucrose	5.3	7.2 *	14	17	7.0	4.5 *	6.9	5.2	
	Glucose	4.4	8.7	7.2	8.9	5.3	4.4	6.2	5.1	
	Fructose	2.9	5.2	4.7	5.9	3.7	3.2	4.8	3.3 *	
	Total SS	13	21	26	32	16	12	18	13	
	HPF	0.5	3.2	1.0	2.4	2.3	3.7	3.2	1.8	
	TNC	13	24 *	27	35	18	16	21	15	

^{*}indicates significance at *p*<0.05 between NI and I treatments SS= soluble sugars, HPF= high degree of polymerization fructans, TNC= total nonstructural carbohydrates

Conclusions: Disease symptoms

- For most cultivars, C+H efficiently reduced disease symptoms after 15 days
- The positive effect on disease suppression by C+H was higher under elevated CO₂
- Inter- and intraspecific differences in turfgrass response to C+H and CO₂ concentration.
 - Cultivar selection could be part of Integrated Pest Management (IPM) practices to reduce Microdochium patch disease both under current and future conditions.

Conclusions: Biochemical responses

- Overall decrease in amino acids and carbohydrates over time
- Elevated CO₂ decreases free amino acids
- Inoculation decreases free amino acids while effect of sugars is varied
- When treated with C+H (Focus low response, Independence high response) at 800 ppm we observed:
 - An increase in proline (53%) in Independence when inoculated, yet no change for Focus
 - No difference in carbohydrates when treated with C+H

Future Work

- The mechanism of disease suppression by C+H could not be explained by single metabolic changes
 - Further metabolomics studies are needed
- Analysis of RNA expression in creeping bentgrass inoculated with *M. nivale*

Acknowledgements

Funding

- Petro Canada
- Canadian Turfgrass Research Foundation
- Natural Sciences and Engineering Research Council of Canada

People

- Hsiang Lab
- Bertrand Lab
- GTI Staff

Agriculture et Agroalimentaire Canada

Any Questions?

Thank you for your time

Takk for tiden din!

