UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM

Date: 6/29/2015

SUBJECT: Glyphosate: Data Evaluation Records (DERs) for EDSP Tier 1 Assays

PC Code: 417300 Decision No.: 4608 %, 464734 Petition No.: NA Risk Assessment Type: NA TXR No.: 0053233 MRID No.: See Table DP Barcode: D398693, 401747 Registration No.: NA Regulatory Action: NA Case No.: NA CAS No.: 1071-83-6 40 CFR: NA

Ver.Apr. 2010

7 A FROM: Greg Akerman, Ph.D. **Immediate** Office Health Effects Division (7509P)

THROUGH: Jess Rowland Deputy Director Health Effects Division

TO: Jolene Trujillo Biologist/Chemical Review Manager Risk Management and Implementation Branch V Pesticide Re-evaluation Division (7505P)

I. ACTION REQUESTED

The Pesticide Re-evaluation Division (PRD) of OPP has requested that the Health Effects Division (HED) review the Endocrine Disruptor Screening Program (EDSP) Tier 1 assays submitted in response to the agency's Test Order for glyphosate: Test Order # CON-417300-23.

II. RESPONSE

Attached are the EDSP Tier 1 assay DERs for glyphosate.

III. MRID Table

Chemical:	Glyphosate	PC Code: 417300
Guideline	Assay	MRID
890.1100	Amphibian Metamorphosis Assay (Frog)	48671309
890.1150	Androgen Receptor Binding (Rat Prostate)	48671301
890.1200	Aromatase Assay (Human Recombinant)	48671303
890.1250	Estrogen Receptor Binding	48671305
890.1300	Estrogen Receptor Transcriptional Activation	48671307
	(Human Cell Line HeLa-9903)	48071307
890.1350	Fish Short-Term Reproduction	48671311
890.1400	Hershberger (Rat)	48617001
890.1450	Female Pubertal (Rat)	48671315
890.1500	Male Pubertal (Rat)	48671313
890.1550	Steroidogenesis (Human Cell Line – H295R)	48617005
890.1600	Uterotrophic (Rat)	48617003

EPA MRID Number 48671309

Data Requirement:		EPA DP Barcode	401746
		OECD Data Point	231
		EPA MRID	48671309
		EPA Guideline	890.1100
			Amphibian Metamorphosis Assay (Frog)
Test Material:	Glyphosate		Purity (%): 85.14%
Common Name	Glyphosate		
Chemical Name	IUPAC	N-Phosphonomethy	lglycine
	CAS Name	Not reported	
	CAS No.	1071-83-6	
	Synonyms	MON77973	
	EPA PC Co	de 417300	
			1/m
Primary Reviewer:	John Martor	1	Date: 12/13/12
Staff Scientist, Can	nbridge Envire	onmental, Inc.	
Secondary Reviewe	er(s): Teri S.	Myers	Date: 02/25/13 2015 Mpm
Program Manager,	CDM Smith		
Additional and Fina	I Reviewer(s)): Amy Blankinship	Date: Digitally signed by AMY BLANKINSHIP
EPA/OPP/ERB6			AMY BLANKINSHIP BLANKINSHIP BLANKINSHIP
			unce_mmerce.com/ Date: 2015.06.16 08:25:58 -04100
Additional Reviewe	r: Justin Hous	enger	Date:
EPA/OPP/EFED/	ERB5		DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, cn=JUSTIN HOUSENGER,
			dnQualifier=0000044455 Date: 2015.06.16 08:30:23 -04'00'
		Dogo 1 -	× ۲٦
		Page 1 c	<i>11</i> II

Date Evaluation Completed: 6/5/15

CITATION: Schneider, S.Z., T.Z. Kendall, and H.O. Krueger. 2012. Glyphosate: Amphibian Metamorphosis Assay for the Detection of Thyroid Active Substances. Unpublished study performed by Wildlife International, Ltd., Easton, Maryland 21601. Laboratory report number 707A-103. Study sponsored by Joint Glyphosate Task Force c/o Data Group Management, Inc., Raleigh, North Carolina 27615. Study completed April 11, 2012.

Note: The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

Disclaimer: The guideline recommendations in this DER template are offered as a general reference to aid in preparation of the DER. The purpose of these recommendations is not to serve as substitute for the Test Guidelines, nor to provide any guidance on how the study should be conducted.

Page 2 of 77

EXECUTIVE SUMMARY

The 21-day assay of glyphosate (85.14% purity) on amphibian metamorphosis of African clawed frog (*Xenopus laevis*) was conducted under flow-through conditions. Amphibian larvae at Nieuwkoop-Faber (NF) stage 51 (80 per control and treatment group) were exposed to nominal concentrations of 0 (negative control), 0.16, 0.80, 4.0, 20, and 100 mg a.i./L. Mean-measured concentrations were <0.100 (<LOQ; control), 0.13, 0.79, 4.3, 20, and 90 mg a.i./L. The test system was maintained at 21.4 to 22.3°C and a pH of 7.0 to 8.3.

The survival of tadpoles exposed to glyphosate was not significantly affected (p>0.05) as it was 100% in the control group and 99% in each of the treatment concentrations. Tail curvature was the only observed clinical sign (*i.e.*, behavioral and other sublethal effects) at test termination and occurred in 46 to 57 (out of 80 exposed) tadpoles in the control and treatment groups (64, 63, 65, 53, 53, and 78% of tadpoles in the negative control, 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively), and did not appear to be treatment-related.

Glyphosate caused no significant acceleration or delay of median NF developmental stage throughout the test. Further, no asynchronous development was observed. No tadpoles in the control and treatment groups developed beyond NF stage 57. Glyphosate exposure did not cause significant effects on Day 7 or 21 normalized (for snout-vent length) hind-limb length (HLL) at any concentration tested except a significant decrease (p<0.05) at the mid (4.3 mg a.i/L) concentration (\downarrow 15.6%) at Day 7. This effect was not observed in any treatment group at Day 21. Snout-vent length (SVL) was not significantly affected at any treatment concentration at Day 7 but was significantly increased (p<0.05) in the 4.3, 20, and 90 mg a.i/L treatment concentrations at Day 21 (\uparrow 5.2, 2.5, and 6.7%, respectively) compared to the control. Additionally there was a significant increase in Day 21 body weight at 90 mg a.i./L (\uparrow 17%).

There were no treatment-related effects on thyroid gland histopathology at any treatment level, with comparable incidence and severity of thyroid gland atrophy and hypertrophy, and follicular cell hypertrophy and hyperplasia in the control and treatment concentrations. While there appeared to be an increased incidence of mild thyroid gland hypertrophy at the highest treatment concentration, the same incidence was observed at the lowest

Page 3 of 77

treatment concentration and the effect was not concentration responsive. Similar findings were observed for follicular cell height increase: an apparent increase in mild severity at the top concentration with a similar incidence at the lowest treatment concentration and no concentration-responsive pattern. Finally, the pathologist report indicated that there were no treatment-related changes in the thyroid glands of tadpoles exposed to glyphosate when compared to those in the negative control.

All performance criteria were met in this study, except for the test solution coefficient of variance (CV) for the 0.13 and 90 mg a.i./L treatment groups, in which the CVs were 41 and 31%, respectively, both greater than the recommended maximum of 20%. However, this deviation did not impact the interpretation of the results.

The assay satisfies the EDSP Tier 1 Test Order requirements for an Amphibian Metamorphosis Assay (OCSPP Guideline 890.1100).

Results Synopsis: Test organism NF stage at test initiation: 51 Test organism total length at test initiation (optional): Not Reported Test type: flow-through

Page 4 of 77

Treatment (mg a.i./L) [mean-measured]	NF Develo Sta			Limb gth ³	-	nronous opment	Thyroid Gross and Histopathology
[mean-measured]	Day 7	Day 21	Day 7	Day 21	Day 7	Day 21	Day 21
0.13	No	No	No	No	No	No	No
0.79	No	No	No	No	No	No	No
4.3	No	No	Yes	No	No	No	No
20	No	No	No	No	No	No	No
90	No	No	No	No	No	No	No

Table 1: Summary of Developmental and Thyroid Pathology/Histopathology Effects^{1,2} in the Amphibian Metamorphosis Assay (AMA) with Glyphosate.

¹ A "yes" indicates a significant difference based on comparison to the negative (clean water) control, unless otherwise specified.

² The criteria for significance are described in the Reviewer's Analysis and Statistical Verification sections of the DER. Conclusions regarding histopathology may be heavily weighted by the expert opinion of a board-certified pathologist.

³ Hind-limb length is normalized to snout-vent length (SVL).

I. MATERIALS AND METHODS

Guideline Followed: This study was conducted following guidelines outlined in the U.S. Environmental Protection Agency Series 850- Endocrine Disruptor Screening Program Test Guidelines, OCSPP 890.1100: *Amphibian Metamorphosis (Frog)*; and the OECD Guidelines for Testing of Chemicals, Guideline 231: *Amphibian Metamorphosis Assay*. The following deviations were noted:

Page 5 of 77

- Using the provided raw data, the reviewer calculated coefficients of variation (CV) of 41% at the low concentration and 31% at the high concentration. The three other treatment levels had CVs of 4.4 to 6.8%.
- 2. The storage conditions of the test material were not specified.
- 3. The feeding rate was half of the recommended rate (15 mg/animal/day on Days 0 to 4; 40 mg/animal/day on Days 15 to 21).
- The flow-rate of the diluter system (69.4 mL/min) exceeded the recommended flow rate (25 mL/min), but provided the appropriate volume turnover (complete volume replacement approximately every 2.4 hours).

These deviations do not impact the interpretation of the study.

Compliance: Signed and dated No Data Confidentiality, GLP, and Quality Assurance statements were provided. This study was conducted in compliance with Good Laboratory Practice Standards as published by the U.S. Environmental Protection Agency (40 CFR Parts 160 and 792); and OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17), with the following exceptions: periodic analyses of water for potential contaminants were not performed according to Good Laboratory Practice Standards, but were performed using a certified laboratory and standard US EPA analytical methods; and, preliminary analyses of water iodide concentrations were not performed according to Good Laboratory Practice Standards.

A. Test Material MON 77973 (Glyphosate)

Description: Solid

OECD recommends describing water solubility, melting/boiling point stability in water and light, pKa, Pow or Kow, vapor pressure of test compound, expiration date.

Page 6 of 77

Lot No./Batch No. : GLP-1103-21149-T (Lot No.)

Purity:

85.14%

Impurities: None reported

Stability of Compound: The mean-measured concentrations yielded recoveries of 78 to 109% of nominal, with coefficients of variation ranging from 4.4 to 41%, with greater than 20% CV in the lowest and highest treatment group. A diluter malfunction was reported in the lowest treatment group on Day 14 in which the measured concentrations were <LOQ. Analytical samples taken on Day 16 showed that test solutions had returned to about 65% of nominal. Additionally, on Day 21 in the highest treatment group (100 mg a.i./L nominal), the measured concentrations were about 50% of nominal for which analysis of backup samples confirmed. The reason for this decline in test concentration at Day 21 was not reported.</p>

Storage Conditions of

Test Chemicals: Not specified

Page 7 of 77

EPA MRID Number 48671309

B. Test Organism

Table 2: General Information About the Test Species and Parental Care.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Species common name:	African clawed frog		EPA recommends African clawed frog
Species scientific name:	Xenopus laevis		(Xenopus laevis). Western [Africa] clawed
Species strain (if stated):	Not specified		irog Silurana (Xenopus) iropicalis may be used as an alternate species ¹ ; however, a
			list of all of the necessary protocol
			deviations to accommodate this species is
			recommended for inclusion in the study
			report. The guideline recommends that the
			performance criteria used to support the
			reliability of the test be identified.

Disruptor Screening Program Tier 1 Assays (OCSPP Test Guideline Series 890). March 3, 2011. Office of Chemical Safety and Pollution Prevention U.S. Environmental Protection Agency (EPA). (2011). Corrections and Clarifications on Technical Aspects of the Test Guidelines for the Endocrine (OCSPP), Washington, D.C. (http://www.epa.gov/endo/pubs/assayvalidation/clarificationdoc.pdf).

-

Page 8 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Were parents maintained as in- house stock?	Yes	Original culture was obtained from Xenopus I (Dexter, Michigan).	EPA recommends that larvae used in the assay be derived from in-house adults.
Were parental acclimation conditions same as definitive test?	Yes		
Acclimation period for parental frogs (if applicable):	One week		
Details on parental feeding:	Frogs were fed an adult <i>Xenopus</i> diet supplied by Zeigler Brothers, Inc. of Gardners, Pennsylvania at a rate sufficient to maintain the health of the culture.		

Page 9 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Details on parental health:	Culture frogs showed no sign of		
	disease or stress prior to the		
	test.		

Table 3: Larval Selection and Care.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Best single spawn?	Yes	Best single spawn had a viability of 98.5%.	EPA and OECD recommend that the best 2 - 3 individual spawns, with a minimum of
Number of spawns evaluated (if At least 3 applicable):	At least 3		1500 larvae/spawn, be evaluated to identify the best single spawn, and that the larvae
Number of eggs sampled per spawn:	~250	Eggs were collected and evaluated the day after injecting three adult pairs with hGC to induce spawning.	selected for testing originate non the best single spawn (i.e., the spawns are not co- mixed)
NF stage at test initiation	51		

DER Template Version: 22 September 2011

Page 10 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Age at test initiation:	16 days post-fertilization (dpf)		EPA recommends that the definitive study be initiated with larvae at Nieuwkoop − Faber (NF) developmental stage 51 (≤17
Mean total length at test initiation (if reported):	Not reported		days post-tertilization).
Range of total length at test initiation (if reported):	Not reported		
Was the optional size selection method used?	Q		
Details on larval selection:	Three adult male and female frogs were injected with human chorionic gonadotropin (hGC) to induce spawning and each pair was placed in a separate spawning tank overnight.	Eggs were collected the following day and the spawn with the highest viability was used to select tadpoles for use in the definitive test.	

Page 11 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Loading rate (rearing density):	2 larvae/L	20 larvae per test vessel (10	EPA recommends that rearing density
		L)	(loading rate) not exceed approximately 10
			larvae/L culturing system for flow-through
			systems or 4 tadpoles/L in static-renewal
			exposure systems.
Type of food:	Sera Micron®		EPA recommends Sera Micron $^{\otimes}$ throughout
Source of food:	Sera North America,		pre-exposure (after NF stage 45/46) and
	Montgomeryville, PA		during the entire 21-d definitive study. If
			another diet is used. the study report should
lodide concentration in diet (if	Not reported		provide analysis of iodide content and
known):			potential contaminants, and the diet should
			demonstrate equal performance to Sera
			Micron®.
Frequency of feeding:	3 times/day		EPA recommends that feeding occur at
			least twice per day.

DER Template Version: 22 September 2011

Page 12 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Details on feeding regime:	The feeding rate was half of		It is recommended that food rations during
	the recommended rate (15		the pre-exposure period be increased along
	mg/animal/day on Days 0 to		with larval growth to approximately 30
	4; 40 mg/animal/day on Days		mg/larva/day by test initiation. EPA and
	15 to 21).		OECD recommend that food rations
			increase from 30 mg/larva/day at test
			initiation (Study Day 0-4) to 80
			mg/larva/day in the last week of the test
			(Study Day 15-21).

C. Exposure System

Table 4: Summary of Information on the Exposure System and Test Vessel Characteristics.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Type of exposure:	Flow-through		EPA recommends the use of a flow-
			through system.

Page 13 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Type of flow-through dilution system (if applicable):	Continuous-flow diluter		Intermittent flow proportional diluters or continuous flow serial diluters are recommended. ²
Flow-through rate (if applicable):	~69.4 mL∕min	Calculated based on volume of test vessel (10 L) and number of volume additions per day (10). This flow rate provided a complete volume replacement approximately every 2.4 hours.	Recommended flow-through rate is 25 mL/min (complete volume replacement ca. every 2.7 hrs).

Additional guidance for aquatic test design is located in OCSPP Guideline 850.1000, Special Considerations for Conducting Aquatic Laboratory Studies. 2

DER Template Version: 22 September 2011

Page 14 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Details on toxicant mixing for	Fluid metering pumps were used	Pumps and rotameters were	Recommended toxicant mixing for flow-
flow-through systems (if	to deliver volumes of a single test	calibrated prior to the test and	through systems: 1) Mixing chamber is
applicable):	substance stock solution to mixing	verified or recalibrated, if	recommended but not required; 2)
	chambers indiscriminately	necessary, approximately weekly	Aeration is not recommended for
	assigned to each treatment. Stock	during the test. Delivery of test	mixing;3) A demonstration that the test
	solutions were diluted with well	solutions to the test chambers	solution is completely mixed before
	water in the mixing chambers,	was initiated five days prior to the	introduced into the test system is
	and the flow of solution to the	introduction of the test organisms	recommended; 4) The recommended
	test vessels was controlled using	in order to achieve equilibrium of	flow splitting accuracy is within 10%.
	rotameters.	the tests substance in the test	
		system. The general operation of	
		the exposure system was checked	
		visually at least two times per day	
		during the test and at least once	
		on the last day of the test.	

EPA MRID Number 48671309

	Value(s)	Details or Remarks	Guideline Recommendations
Renewal period for static NA			If static renewal is used, EPA
renewal (if applicable):			recommends 24-hr renewal; renewal
			period is recommended not to exceed 72
			hours.
Aeration? No			EPA recommends maintaining dissolved
			oxygen concentrations <u>>40%</u> air
			saturation (<u>></u> 3.5 mg/L <u>)</u> . Aeration may
			be maintained through bubblers. It is
			recommended to set bubblers at levels
			that do not cause stress on the tadpoles.

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Source of dilution water:	Water used for culturing and	Well water is characterized as	EPA recommends natural or reconstituted
	testing was freshwater obtained	moderately-hard water.	water; it is recommended that natural
	from a well ∾40 meters deep		water be sterilized with UV and tested for
	located on the WLI site. Water		pesticides, heavy metals, and other
	was passed through a sand filter		possible contaminants, including known
	to remove particles >25 µm,		substrates of the iodine transporter of the
	pumped into a storage tank, and		thyroid gland (e.g., fluoride, chlorate,
	aerated with spray nozzles. Prior		perchlorate). OECD accepts any water in
	to use, water was filtered to 0.45		which the test species show control
	um to remove fine particles.		survival at least as good as indicated in
			the test guideline.
Was dilution water analyzed	Yes. See Reviewer's Comments.		
for pesticides, heavy metals,			
and other contaminants?			

DER Template Version: 22 September 2011

Page 17 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
lodide supplementation in	No		If reconstituted water is used or if
water?			background levels of iodide in natural
			water are less than 0.5 $\mu g/L$, iodide
			supplementation is recommended. This
			supplementation is in addition to the
			recommended dietary source of iodide
			(e.g in Sera Micron).
Test vessel type / materials:	Glass		EPA and OECD recommend that water-
			contact portions of the system not
			compromise the study (e.g., all glass
			vessels or glass vessels with stainless
			steel frames are acceptable examples).
Test vessel size:	12 L		
Fill volume:	10 L		
Additional details on exposure	NA		
system:			

Page 18 of 77

EPA MRID Number 48671309

Table 5: Summary of Water Quality Characteristics in the Test System.

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
Hardness (mg/L as CaCO ₃)	140	144	142.5	Weekly in control and highest treatment group, alternating among replicates.	EPA recommends hardness 40 to 48 mg∕L as CaCO _{3.}
Hď	0.7	8.3	8.0	Weekly in each test vessel.	EPA recommends pH 7.5 \pm 1, inter- replicate and inter-treatment differentials should not exceed 0.5.
Dissolved oxygen (mg/L)	7.6	8.7	8.2	Every 2 to 3 days in each test vessel.	EPA recommends dissolved oxygen (DO) >3.5 mg/L (>40% air saturation). OECD recommends DO concentration >3.5 mg/L (>40% air saturation).

DER Template Version: 22 September 2011

Page 19 of 77

EPA MRID Number 48671309

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
				Weekly in each test	EPA recommends temperature $22\pm l^{\circ}C;$
				vessel. Also	inter-replicate and inter-treatment
T	, t C	, , , , , , , , , , , , , , , , , , ,	0	measured	differentials should not exceed 0.5°C.
remperaure	4.I2	6.22	21.4	continuously in one	
				negative control	
				replicate.	
					EPA recommends aquatic iodide range
lodide		6 µg∕L (Ma	6 µg∕L (March 2011, non-GLP)	(d	0.5 – 10 μg/L (supplemental iodide should not exceed 2 μg/L).

Page 20 of 77

EPA MRID Number 48671309

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
Ammonia		No	Not Reported		General recommendations for frequency
Fluoride	1	1	0.85 mg/L	Periodic screening	of measurements: EPA recommends that
Perchlorate		No	Not Reported		water quarry parameters be measured in a control and at one test item
Chlorate		NG	Not Reported		concentration at least weekly. In static
Alkalinity (mg/L as CaCO ₃)	146	178	161		renewal systems, water quality
Conductance (μS/cm)					be measured just prior to renewal. In
				Weekly in control	addition, EPA recommends that DO be
				and highest	measured at each concentration at least
				treatment group,	weekly and that temperature be
	312	350	330	alternating among	measured continuously. OECD
				replicates.	recommends that DO and temperature
					be measured at least weekly and that pH
					and hardness be measured at least at
					the beginning and end of the test.

DER Template Version: 22 September 2011

Page 21 of 77

EPA MRID Number 48671309

D. Study Design and Additional Experimental Conditions

Table 6: Range-Finding Study Conditions (if Applicable).

able of transfer intaming ordary contained in Appreciation.	in upplication.		
Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Was a range-finder conducted?	Yes		
If yes, what was the method for	100 mg/L and reported solubility		EPA recommends that the highest
determining the highest test	of 10.1 g/L		test concentration is either the
concentration in the range-finder?			solubility limit of the test
			compound, 100 mg/L, or
			demonstrates adequate evidence
			of toxicity (e.g., <10% mortality),
			whichever concentration is lowest.
Species:	Xenopus laevis		
Life stage:	NF 51		
Test duration:	14 days		

DER Template Version: 22 September 2011

Page 22 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Additional details:	The study was conducted for 14	Analytical recoveries ranged from	
	days under flow-through conditions 102 to 105% of nominal.	102 to 105% of nominal.	
	at nominal concentrations of O		
	(negative control), 6.25, 12.5, 25,		
	50, and 100 mg a.i./L. No signs		
	of toxicity were observed and one		
	incidental mortality occurred at the		
	50 mg a.i./L level.		

Table 7: Definitive Study Conditions.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Test duration:	21 days		EPA recommends that the duration of the
			definitive test be 21 days.

DER Template Version: 22 September 2011

Page 23 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Method for selecting the highest test concentration in the	Range-finder		EPA recommends that the highest test concentration is either the solubility limit of
definitive test:			the test compound, 100 mg/L, or demonstrates adequate evidence of toxicity (e.g., ≤10% mortality), whichever concentration is lowest.
Reference study citation (if applicable):	NA		
Separation of test concentrations:	S		<i>EPA recommends that the maximum concentration separation be 0.1 and the minimum be 0.33.</i>
Number of test concentrations:	5		EPA recommends a minimum of 3 concentrations and a control, plus solvent control if appropriate.
Are nominal concentrations adjusted for purity?	Yes	Adjusted based on the acid form	

Page 24 of 77

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Indicate the type of values presented for measured concentrations:	Mean-measured		
Limit of quantification (LOQ):	0.100 mg a.i.∕L		EPA recommends that for chemical test concentrations below the LOQ, analyses be conducted on the stock solutions.
Level of detection (LOD):	Not Reported		
Frequency of measurement:	Samples were collected for analysis on Days O. 7, 14, and 21. Additional samples were collected from the lowest level on Day 16, and on Day 1 in the middle (4.0 mg a.i./L) level		It is recommended that test item concentration be measured in one tank at each treatment level at test initiation and every week thereafter.
Number of replicates in control:	4		EPA recommends 4 replicates.

DER Template Version: 22 September 2011

Page 25 of 77

EPA MRID Number 48671309

	Value(s)	Details or Remarks	Guideline Recommendations
Number of replicates in solvent	NA		EPA and OECD recommend the use of a
control (if applicable):			concurrent solvent control when a
			solubilizing agent is used. EPA
			recommends 4 replicates.
Number of replicates per test 4	4		EPA recommends 4 replicates.
item treatment level:			
Number of larvae per treatment 8	80		
at test initiation:			
Was a solvent used?	No		
Solvent type (if applicable):	NA		

Page 26 of 77

EPA MRID Number 48671309

	Value(s)	Details or Remarks	Guideline Recommendations
Maximum solvent concentration NA			EPA recommends that the solvent not
(if applicable):			exceed 0.02 ml/L³. OECD recommends
			that solvent have no effect on survival nor
			produce any other adverse effects and that
			concentration not be greater than 0.1 ml/L ⁴ .
Was a positive control used? No			
Positive control (if applicable): NA	T		
Positive control concentration(s) NA	T		
(if applicable):			
Photoperiod: 12	12 hrs light :		EPA recommends photoperiod 12:12
12	12 hrs dark		(light:dark).

Hutchinson TH, Shillabeer N, Winter MJ, Pickford DB (2006). Acute and chronic effects of carrier solvents in aquatic organisms: A critical review. Review. Aquatic Toxicology, 76, pp.69-92.

4

m

Page 27 of 77

OECD (2000). Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. Environmental Health and Safety Publications. Series on Testing and Assessment. No. 23. Paris, France.

EPA MRID Number 48671309

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Light intensity at water's	0.911-1.387 Klux		EPA recommends light intensity 0.6 – 2
surface:			Klux (at water's surface).
Additional details:		Test solutions were clear and	
		colorless with no precipitate	
		observed	

EPA MRID Number 48671309

Table 8: Summary of Treatment Concentrations in the Amphibian Metamorphosis Assay with Glyphosate.

Treatment ID	Nominal Concentration (mg a.i./L)	Measured Concentration (mg a.i./L)	Mean CV (%)	Details or Remarks	Guideline Recommendations
Control (dilution water only)	0.00	<0.100	AN		EPA and OECD recommend that test item concentrations
Treatment 1	0.16	0.13	41		be maintained at a coefficient
Treatment 2	0.80	0.79	5.2		U Valiaturi (UV) 2000.
Treatment 3	4.0	4.3	4.4	The Day O samples were not included in the mean measured concentrations as the results were due to sampling/analysis error	
Treatment 4	20	20	6.8		
Treatment 5	100	90	31		

Abbreviations: ^{cv} Coefficient of variation.

DER Template Version: 22 September 2011

Page 29 of 77

EPA MRID Number 48671309

E. Observations

Day 7- NF stage, wet weight, snout-vent length (SVL), hind limb length (HLL), normalized HLL Day 21- NF stage, wet weight, SVL, HLL, normalized HLL, thyroid pathology Daily- mortality, clinical observations **Biological Endpoints:**

Were raw (individual) data provided? Yes

EPA recommends that observations of mortality and clinical signs occur daily, at a minimum; other observations are recommended as follows: NF developmental stage (Days 7 and 21); any asynchronous development, indicated by tadpoles that cannot be assigned an NF stage (Days 7 and 21); hind limb length (Days 7 and 21); snout-vent length (Days 7 and 21); body weight (test initiation, for optional size-based larval selection); and thyroid gland gross pathology and histopathology (Day 21). Note the histopathology section of the test guideline also includes thyroid gross pathology observations.

DER Template Version: 22 September 2011

Page 30 of 77

II. RESULTS AND DISCUSSION

A. Results

Mean percent survival on Day 7 was 100% in the negative control and mean-measured 0.13, 0.79, and 4.3 mg a.i./L treatment groups, and 98.8% in the mean-measured 20 and 90 mg a.i./L treatment groups (Table 9). By test termination, survival averaged 98.8% in the negative control, 100, 100, 97.5, and 98.8% in the mean-measured 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively.

Table 9: Larval Mortality in Xenopus laevis.

		Larval Mortality									
Treatment (mg a.i./L) [mean-measured]		Day 7 ¹			Day 21						
[]	n	Mortality #	Mortality %	n	Mortality #	Mortality %					
Negative Control	80	0	0	60	1	1.2					
0.13	80	0	0	60	0	0					
0.79	80	0	0	60	0	0					
4.3	80	0	0	60	0	0					
20	80	1 ²	1.2	59	24	2.5					
90	80	1 ³	1.2	59	1	1.2					

¹ Sample size and cumulative mortality values at Day 7 prior to interim sacrifice.

² One mortality in the Replicate C on Day 4; One tadpole inadvertently killed during siphoning of test chamber in Replicate A on Day 2 and not included in overall mortality on Day 7 or 21

³ One mortality in Replicate A on Day 7

⁴ One mortality in Replicate D on Day 21.

Page 31 of 77

Median developmental stage on Day 7 was 53 in all treatment groups (Table 10). On Day 21, median developmental stage was 57 in the control and all treatment groups. No asynchronous development was reported.

	Developmental Stage								
Treatment (mg a.i./L)		Da	ay 7		Day	y 21			
[mean-measured]	n	Median Stage	# Asynchronous	n	Median Stage	# Asynchronous			
Negative Control	4	53	0	4	57	0			
0.13	4	53	0	4	57	0			
0.79	4	53	0	4	57	0			
4.3	4	53	0	4	57	0			
20	4	53	0	4	57	0			
90	4	53	0	4	57	0			

Table 10: Larval Development in Xenopus laevis - Developmental Stage and Asynchronous Development.

Day 7 normalized HLL averaged 0.13 mm in the negative control and 0.13, 0.13, 0.11, 0.13, and 0.13 mm in the mean-measured 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively (Table 11). On Day 21, normalized HLL averaged 0.33 mm in the negative control and 0.36, 0.33, 0.34, 0.34, and 0.33 mm in the mean-measured 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively.

Page 32 of 77

			Hi	nd Limb L	.ength (H	ILL)		
Treatment		Day	7			Day 2	21	
(mg a.i./L) [mean-measured]	Ν	Mean (mm)	±SD	HLL: SVL ¹	n	Mean (mm)	±SD	HLL: SVL ¹
Negative Control	4	2.08	0.10	0.13	4	7.65	0.68	0.33
0.13	4	2.10	0.08	0.13	4	8.48	0.22	0.36
0.79	4	2.15	0.17	0.13	4	7.78	0.43	0.33
4.3	4	1.75	0.21	0.11	4	8.20	0.50	0.34
20	4	2.08	0.10	0.13	4	8.00	0.69	0.34
90	4	2.10	0.14	0.13	4	8.25	0.79	0.33

Table 11: Larval Development in Xenopus laevis - Hind Limb Length.

Abbreviations: ^{SD} Standard deviation.

¹ Summary results for snout-vent length (SVL) are presented in the next table (Table 12).

Mean SVL on Day 7 ranged from 15.8 mm in the negative control to 16.1 mm in all but the lowest treatment group (Table 12). By Day 21, SVL averaged 23.2 mm in the negative control and 23.6, 23.5, 24.4, 23.8, and 24.8 mm in the mean-measured 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively.

Page 33 of 77

Treatment		Sno	ut-Vent I	_eng	ngth (SVL)			Body Weight ¹						
(mg a.i./L)		Day	7		Day 2	21		Day 7	7		Day 2	1		
[mean- measured]	n	Mean (mm)	±SD	n	Mean (mm)	±SD	n	Mean (g)	±SD	n	Mean (g)	±SD		
Negative Control	4	15.8	0.98	4	23.2	0.43	4	0.267	0.040	4	0.864	0.038		
0.13	4	15.9	0.38	4	23.6	0.66	4	0.273	0.021	4	0.925	0.100		
0.79	4	16.1	0.75	4	23.5	0.83	4	0.288	0.031	4	0.907	0.078		
4.3	4	16.1	0.80	4	24.4	0.15	4	0.290	0.042	4	0.973	0.037		
20	4	16.1	0.34	4	23.8	0.45	4	0.282	0.0	4	0.920	0056		
90	4	16.1	0.99	4	24.8	0.38	4	0.300	0.048	4	1.01	0.060		

Table 12: Larval Growth in Xenopus laevis.

Abbreviations: ^{SD} Standard deviation.

¹ Also referred to as "wet weight" in the test guideline.

Tables 13-15 show the histopathological diagnoses reported resulting from the exposure to glyphosate. Table 15 shows additional diagnoses that were examined in the study report, that as reported, do not match up with the standard histopathological diagnoses in Tables 13 and 14. Cells that are left blank in a given column denote that this diagnosis was not examined by the study.

According to the study author, there were no apparent treatment-related trends in thyroid histopathology. Observations and severity of thyroid atrophy and hypertrophy, and follicular cell hypertrophy and hyperplasia were comparable between the control and treatment groups (Table 13). The animals were stage matched. While there appears to be an increased incidence of mild thyroid gland hypertrophy in the highest treatment concentration, the same incidence was observed at the lowest treatment concentration and the effect was not concentration responsive. Similar findings were observed in for follicular cell height increase an apparent increase in mild severity at the top

Page 34 of 77

concentration but again, this incidence was similar to the lowest treatment concentration and no concentration-responsive pattern was seen. Finally, the pathologist report indicated that there were no treatment related changes in the thyroid glands of tadpoles exposed to glyphosate when compared to organisms in the negative control.

Treatment				Diagr	nostic Obser	vations	3 ¹		
(mg a.i./L) [mean-	Severity		oid Gland pertrophy	-	roid Gland Atrophy		icular Cell pertrophy		cular Cell perplasia
measured]		n	Incidence	n	Incidence	n	Incidence	n	Incidence
Negative	0	20	17	20	19				
Control	1	20	3	20	1				
	2	20	0	20	0				
	3	20	0	20	0				
0.13	0	20	14	20	17				
	1	20	4	20	3				
	2	20	2	20	0				
	3	20	0	20	0				
0.79	0	20	17	20	17				
	1	20	1	20	2				
	2	20	2	20	1				
	3	20	0	20	0				
4.3	0	20	18	20	18				
	1	20	1	20	2				
	2	20	1	20	0				
	3	20	0	20	0				

Table 13: Gross Pathology and Histopathology of the Thyroid Gland in Xenopus laevis.

Page 35 of 77

DER Template Version: 22 September 2011

EPA MRID Number 48671309

Treatment				Diag	nostic Obser	vations	5 ¹		
(mg a.i./L) [mean-	Severity	-	oid Gland pertrophy	-	roid Gland Atrophy		icular Cell pertrophy		cular Cell erplasia
measured]		n	Incidence	n	Incidence	n	Incidence	n	Incidence
20	0	20	18	20	19				
	1	20	0	20	1				
	2	20	2	20	0				
	3	20	0	20	0				
90	0	20	14	20	18				
	1	20	6	20	2				
	2	20	0	20	0				
	3	20	0	20	0				

Thyroid gland gross pathology and histopathology are graded 0 - 3 based on severity: 0=Not remarkable, 1=Mild,

2=Moderate, 3=Severe. See OECD No. 82 for reference.

1

Page 36 of 77

EPA MRID Number 48671309

Table 14: Additional Thyroid Gland Histopathology Observations in Xenopus laevis.

					Additional Qu	litative	Additional Qualitative Observations ¹				
Treatment (mg a.i./L)		Follic	Follicular Lumen	Folli	Follicular Lumen	Foll	Follicular Cell	Foll	Follicular Cell	Foll	Follicular Cell
[mean-measured]	Severity	Area	Area (Increase)	Areá	Area (Decrease)	Heigh	Height (Increase) ²	Height	Height (Decrease) ³		Shape
		ц	Incidence	ч	Incidence	۲	Incidence	E	Incidence	۲	Incidence
Negative Control	0					20	17	20	21		
	1					20	1	20	2		
	2					20	2	20	1		
	3					20	0	20	0		
0.13	0					20	14	20	16		
	1					20	4	20	2		
	2					20	1	20	2		
	3					20	1	20	0		
0.79	0					20	13	20	17		
	1					20	3	20	3		
	2					20	3	20	0		
	3					20	1	20	0		

EPA MRID Number 48671309

					Additional Qu	alitative	Additional Qualitative Observations ¹				
Treatment		Follic	Follicular Lumen	Folli	Follicular Lumen	Foll	Follicular Cell	Foll	Follicular Cell	Fol	Follicular Cell
(וווש מיוי <i>ור)</i> [mean-measured]	Severity	Area	Area (Increase)	Area	Area (Decrease)	Heigh	Height (Increase) ²	Height	Height (Decrease) ³		Shape
		ч	Incidence	u	Incidence	u	Incidence	u	Incidence	ч	Incidence
4.3	0					20	16	20	21		
	-					20	2	20	3		
	2					20	2	20	0		
	3					20	0	20	0		
20	0					20	18	20	15		
	1					20	1	20	4		
	2					20	1	20	1		
	3					20	0	20	0		

Page 38 of 77

EPA MRID Number 48671309

Treatment (mg a.i.tl)Follicular Lumen (mg a.i.tl)Follicular Cell Follicular LumenFollicular Cell Follicular CellFollicular Cell Follicular CellFollicular Cell Follicular Cell(mg a.i.tl) (mean-measured)Severity Area (Increase)Area (Decrease)Height (Increase) ² Height (Decrease) ³ Falae(manumeasured)nIncidencenIncidencenIncidencenIncidence90001IncidencenIncidencenIncidencenIncidence9111111Incidencen142017NIncidence921111111142017NIncidence931111111142017NNIncidence93111111111NNNNNN93111111111NNNNNNNNN94111111111NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Additional Qu</th><th>ıalitative</th><th>Additional Qualitative Observations¹</th><th></th><th></th><th></th><th></th></t<>						Additional Qu	ıalitative	Additional Qualitative Observations ¹				
Image: number line of the section in the section	Treatment		Follic	ular Lumen	Foll	icular Lumen	Fol	licular Cell	Foll	icular Cell	Fol	licular Cell
nIncidencenIncidencenIncidencen001201420171111201420311112012031211202020313120020001	(IIIY a.i./L) [mean-measured]	Severity	Area	(Increase)	Area	a (Decrease)	Heigh	tt (Increase) ²	Height	(Decrease) ³		Shape
0 20 14 1 20 2 2 2 2 3 2 4 20 4 2 3 2 4			Ч	Incidence	۲	Incidence	ч	Incidence	Ľ	Incidence	и	Incidence
4 0	06	0					20	14	20	17		
4 0		1					20	2	20	3		
0		2					20	4	20	0		
		З					20	0	20	0		

Thyroid histopathology is graded 0 - 3 based on severity: 0=Not remarkable, 1=Mild, 2=Moderate, 3=Severe. See OECD No. 82 for reference.

Denoted in study report as "Follicle Size Increase" 2

Denoted in study report as "Follicle Size Decrease" m

Page 39 of 77

			Addi	tional	Qualitative C	bserv	ations ¹		
Treatment (mg a.i./L) [mean- measured]	Severity	As	Follicle ymmetry acrease	As	Follicle symmetry ecrease	As	Gland symmetry ncrease		cular Cell perplasia
		n	Incidence	n	Incidence	n	Incidence	n	Incidence
Negative	0	20	17	20	20	20	17		
Control	1	20	0	20	0	20	3		
	2	20	2	20	0	20	0		
	3	20	1	20	0	20	0		
0.13	0	20	19	20	19	20	19		
	1	20	1	20	1	20	1		
	2	20	0	20	0	20	0		
	3	20	0	20	0	20	0		
0.79	0	20	20	20	20	20	18		
	1	20	0	20	0	20	2		
	2	20	0	20	0	20	0		
	3	20	0	20	0	20	0		
4.3	0	20	20	20	18	20	17		
	1	20	0	20	2	20	3		
	2	20	0	20	0	20	0		
	3	20	0	20	0	20	0		
20	0	20	20	20	19	20	18		
	1	20	0	20	1	20	2		
	2	20	0	20	0	20	0		
	3	20	0	20	0	20	0		

Table 15: Additional Thyroid Gland Histopathology Observations in Xenopus laevis.

Page 40 of 77

DER Template Version: 22 September 2011

EPA MRID Number 48671309

			Addi	tional	Qualitative C	Dbserv	ations ¹		
Treatment (mg a.i./L) [mean- measured]	Severity	As	Follicle ymmetry acrease	As	Follicle symmetry ecrease	As	Gland symmetry ncrease		cular Cell erplasia
modourouj		n	Incidence	n	Incidence	n	Incidence	n	Incidence
90	0	20	19	20	19	20	18		
	1	20	1	20	1	20	2		
	2	20	0	20	0	20	0		
	3	20	0	20	0	20	0		

¹ Thyroid histopathology is graded 0 – 3 based on severity: 0=Not remarkable, 1=Mild, 2=Moderate, 3=Severe. See OECD No. 82 for reference.

Control and treatment tadpoles generally appeared normal and healthy throughout the test. Beginning on Day 2 and continuing until test termination, tail curvature was observed in control and treatment tadpoles. By test termination, tail curvature was observed in 64, 63, 65, 53, 53, and 78% of tadpoles in the negative control, 0.13, 0.79, 4.3, 20, and 90 mg a.i./L treatment groups, respectively (Table 16). Percentages were based on initial number of tadpoles used to initiate the test.

Page 41 of 77

EPA MRID Number 48671309

Table 16: Clinical Signs in Xenopus laevis.

Treatment	Clinical Signs'		
(mg a.i./L)			
[mean-	Type	n²	Incidence
measured]			
Negative Control	Tail curvature	59	54
0.13	Tail curvature	60	53
0.79	Tail curvature	60	52
4.3	Tail curvature	60	50
20	Tail curvature	57	46
06	Tail curvature	59	57

¹ Note that asynchronous development (unable to stage) is reported previously in Table 10.

² Number of surviving tadpoles at test termination

DER Template Version: 22 September 2011

Page 42 of 77

B. Study Author's Analysis and Conclusions

Analyses were performed on survival, developmental stage, body weight, SVL, normalized HLL, and incidence and severity of thyroid abnormalities. Unless otherwise noted, the unit of statistical analysis was the replicate test chamber. If necessary, endpoints were analyzed using two complementary statistical approaches. For growth parameters, endpoints were first evaluated for monotonicity. Since responses for these endpoints appeared to be monotonic, a step-down Jonckheere-Terpstra trend test was used to evaluate trends in the ranks of replicate means to determine possible concentration responsive trends among the treatment groups. Body weight and SVL data also were analyzed by performing pair-wise comparisons using Dunnett's multiple comparison test to further evaluate those treatment groups that statistically differed from the control group. Data for endpoints analyzed by Dunnett's test were evaluated for normality using Shapiro-Wilk's test and for homogeneity of variance using Levene's test ($\alpha = 0.01$).

Survival, developmental stage, and histopathology severity scores were not amenable to the statistical methods used for analysis of other endpoints. In particular, the most suitable unit of statistical analysis for these endpoints was the individual animal. Therefore, survival was analyzed using Fisher's Exact test, and histopathology severity scores of individuals were analyzed using step-down Jonckheere-Terpstra trend tests only.

Statistical tests used to evaluate treatment effects were performed at confidence level of α = 0.05 with SAS software. In regards to the tail curvature, the study authors attributed that was likely related to feeding rate, not exposure to the test material.

Throughout the test, there were no significant effects on developmental stage or normalized HLL. Further, there were no apparent effects on thyroid histopathology. There were significant increases in Day 21 wet weight at the 90 mg a.i./L treatment group and in Day 21 SVL at the 4.3 and 90 mg a.i./L treatment groups. However, since there were no effects on developmental endpoints, the study

Page 43 of 77

authors concluded that the test material was "likely thyroid inactive" to *Xenopus laevis* tadpoles under conditions used in the current study. Glyphosate did not appear to impact the normal function of the HPT axis.

C. Reviewer's Analysis and Conclusions

Statistical Methods: The reviewer visually analyzed mortality data because survival averaged \geq 97.5% in all treatment groups. Replicate median values for developmental stage on Days 7 and 21 did not exhibit an increasing or decreasing monotonic trend, therefore, the Mann-Whitney U-test was used to assess differences in developmental stage. Similar to developmental stage, Day 7 SVL and normalized HLL were not monotonic and did not meet the assumptions of ANOVA and were therefore analyzed using the Mann-Whitney test. Day 7 wet weight and HLL were not monotonic but were normally distributed and had equal variance; therefore, these endpoints were analyzed using Dunnett's multiple comparison test. On Day 21, wet weight, HLL, and normalized HLL did not exhibit a monotonic trend but met the assumptions of normality and homogeneity of variance and were therefore analyzed using Dunnett's multiple comparison test. Day 21 SVL exhibited a monotonic trend and was analyzed using the Jonckheere-Terpstra test. No asynchronous development was observed. Unless otherwise indicated, effects were considered statistically significant at p < 0.05.

Late-stage tadpoles (NF stage \geq 61) were excluded from analysis of growth parameters. Only two late-stage tadpoles were found in the study, both in the mean-measured 90 mg a.i./L treatment group.

Conclusions:

On Day 7, HLL was significantly reduced (16% reduction; Dunnett's, p = 0.017) at the 4.3 mg a.i./L treatment level. No other growth parameters were affected on Day 7. By Day 21, wet weight was significantly greater in the 90 mg a.i./L treatment group (17% promotion; Dunnett's, p = 0.023) and SVL was significantly greater in the three highest treatment groups relative to the

Page 44 of 77

negative control (2-7% increase; Jonckheere-Terpstra, $p \le 0.031$). No effects were observed for developmental endpoints.

While there appears to be an increased incidence of mild thyroid gland hypertrophy in the highest treatment concentration, the same incidence was observed at the lowest treatment concentration and the effect was not concentration responsive. Similar findings were observed in for follicular cell height increase an apparent increase in mild severity at the top concentration but again, this incidence was similar to the lowest treatment concentration and no concentration-responsive pattern was seen. Finally, the pathologist report indicated that there were no treatment related changes in the thyroid glands of tadpoles exposed to glyphosate when compared to organisms in the negative control.

Page 45 of 77

Assay
Metamorphosis
Amphibians,
þ
Glyphosate
of
Toxicity
the
on
Record
ta Evaluation
Data

EPA MRID Number 48671309

T	ЦИ	Development	NE Developmental Stace	0	E	Hind Limb Londth ³	l anath ³		As	ynchr	Asynchronous		Thyroid Gross and
	2			מ	-		Leigu		Õ	evelop	Development		Histopathology
(mg a.i./c)	Day 7	7 /	Day 21	21	Day	Day 7	Day 21	21	Day 7	2	Day 21	-	Day 21
	90:P0W	1		1	%	1	%	1	%	1	%	1	Treatment-Related Effects?
	Mediari	ф	Mediari	þ	Diff.	μ	Diff.	d	Diff.	μ	Diff.	d	(Yes/No)
Negative	٤٤	1	57	1	:		:		1		1	ł	
Control			5										
0.13	53	>0.99	57	>0.99	1.92	0.48	9.23	0.18	;	1	!	ł	No
0.79	53	0.48	25	>0.99	0.00	>0.99	1.54	66.0	1	1	-	ł	No
4.3	53	>0.99	57	>0.99	-15.6	0.028	3.08	0.93	-	1	!	ł	No
20	53	>0.99	57	>0.99	0.00	>0.99	3.08	0.93	-	1	!	ł	No
06	53	0.48	57	>0.99	0.00	>0.99	2.31	0.98	1	1	:	ł	No
Statistical Test	Mann-Whitney	Vhitney	Mann-Whitney	Vhitney	Mann-V	Mann-Whitney	Dunnett's	etťs	1		:		-

Table 17: Developmental and Thyroid Gross Pathology/Histopathology Endpoints^{1,2} in the AMA with Glyphosate.

Abbreviations: ^{Diff.} Difference.

- Unless otherwise indicated, effects are reported based on comparison to the clean water control. Conclusions regarding histopathology may be heavily weighted by the expert opinion of a board-certified pathologist.
- ² Unless otherwise specified, effects are considered statistically significant at p < 0.05.
- ³ Hind-limb length is normalized to snout-vent length (SVL).

Page 46 of 77

Tracting at		Snout-Vent	Length			Body V	Veight	
Treatment (mg a.i./L)	Day	7	Day	[,] 21	Day	7	Day	/ 21
[mean-measured]	% Diff.	p	% Diff.	p	% Diff.	p	% Diff.	p
Negative Control								
0.13	0.47	0.49	1.51	0.19	2.25	0.99	7.12	0.55
0.79	1.90	0.49	1.08	0.23	7.87	0.87	5.04	0.81
4.3	1.58	0.68	5.17	0.006	8.62	0.82	12.7	0.11
20	1.74	0.35	2.48	0.031	5.81	0.96	6.51	0.63
90	1.74	0.41	6.67	<0.001	12.46	0.55	16.8	0.023
Statistical Test	Mann-W	hitney	Jonck	heere	Dunne	tť's	Dunr	nett's

Table 18: Growth Endpoints^{1,2} in the AMA with Glyphosate.

Abbreviations: Difference.

¹ Unless otherwise indicated, effects are reported based on comparison to the negative (clean water) control.

² Unless otherwise specified, effects are considered statistically significant at p < 0.05.

E. Study Deficiencies

Although there were deviations from the guideline, as noted in the Materials and Methods section of the DER, the study met all validity and performance criteria, except for the test solution CVs in the lowest and highest treatment groups, which were 41 and 31%, respectively.

F. Reviewer's Comments

The reviewer's results agreed with those of the study authors.

There was a diluter malfunction in the low concentration on Day 14 and the measured concentrations were below the LOQ (0.100 mg a.i./L). Therefore, a value of half of the LOQ was used when calculating the mean-measured concentrations. Samples were collected and analyzed on Day 16

Page 47 of 77

following repair of the diluter. Additionally, the Day O samples analyzed for the 4.3 mg a.i./L treatment group were <LOQ, and were believed to be due to sampling/analysis error. Additional samples collected on Day 1 were at nominal. The Day O samples were not included in the mean measured concentration calculation.

The results from the periodic screening analysis of the dilution water indicated the presence of the following analytes: calcium (34.9 mg/L), chloride (4.5 mg/L), fluoride (0.85 mg/L), magnesium (13.2 mg/L), potassium (7.00 mg/L), sodium (19.0 mg/L), and sulfate (5.7 mg/L).

The in-life portion of the definitive toxicity test was conducted from October 24 to November 14, 2011.

Comparison of EDSP and EFED Statistical Approaches

Both statistical approaches employed the same tests for each endpoint and yielded identical results.

III. REFERENCES

- Nieuwkoop, P.D., Faber, J. (eds). 1994. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis. Garland Publishing Co, New York, NY USA.
- Personal Communication Dr. Timothy Springer and Dr. John Green. November 30, 2010. Dr. Timothy Springer, Wildlife International, Ltd., Easton, MD 21601, USA. Dr. John Green, E.I. DuPont de Nemours and Company, Wilmington, DE 19898, USA.

The SAS System for Windows. 1999-2001. Version 8.2. SAS Institute, Inc., Cary, North Carolina.

Personal Communication Dr. Henry O. Krueger. 2011. Wildlife International, Ltd., Easton, MD 21601, USA.

Page 48 of 77

APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR01 (7-d wet weight (q)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.075 0.989 0.452 0.925 USE PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level NMeanStdDevStdErrCoef of Var95% Conf.IntervalCtrl 40.270.040.0214.980.20,0.33Dose1 40.270.020.017.820.24,0.31Dose2 40.290.030.0210.520.24,0.34Dose3 40.290.040.0214.280.22,0.36Dose4 40.280.020.017.950.25,0.32Dose5 40.300.050.0215.890.22,0.38 Level Median Min Max %of Control(means) %Reduction(means) Ctrl 0.25 -2.25 Dosel -7.87 Dose2 Dose3 -8.62
 Dose4
 0.28
 0.26

 Dose5
 0.28
 0.27
 -5.81 0.27 0.37 112.46 -12.46 * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 5 18 0.47 0.795 Dunnett - testing each trt mean signif. different than control

Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC

Level Mean Dunnett Isotonic Williams Tukey p-values

Page 49 of 77

						EPA I		001 4007 1309
Dose5		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4
DOSEJ								
Ctrl	0.27	•	0.28	•	•	•	•	•
Dosel	0.27	0.999	0.28	0.822				
Dose2	0.29	0.865	0.28	0.852	0.990	•	•	
Dose3	0.29	0.821	0.28	0.867	0.982	1.000		
Dose4	0.28	0.955	0.28	0.876	0.999	1.000	1.000	
Dose5	0.30	0.552	0.28	0.882	0.878	0.996	0.998	0.978
* * * * * * * * *	* * * * * * *	*****	* * * * * * * * *	*****	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *
Krus Deg MannWhit	kal-Wal rees of 5 - test	lis test - Freedom	equality TestStat 2.68 rt median	alpha-level among trea P-value 0.74 signif. d: ponse relat	atment g e 9 ifferent	roups from com	ntrol	
Level	Medi			t p-value			eere p-v	
Ctrl	0.	.25		•			•	
Dose1		.28		0.676			0.719	
Dose2		.28		0.233			0.907	
Dose3	0.			0.491			0.905	
Dose4 Dose5	0.	. 28		0.341 0.233			0.841 0.887	
DOSED	0.	. 20		0.233			0.007	
DECREAS CONTROL Willi Jonck	ams	END TEST SU	MMARY	LOWEST CO	ONCENTRA'	TION SIG	NIF. LES	S THAN
* * * * * * * *	* * * * * * *	* * * * * * * * * * *	* * * * * * * * *	******	* * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * * * *
PARAMETR Anal			-	-level=0.03 • overall F		l tests		
	erator		minator d			P-value		
	5	18		0.47		0.795		
				gnif. diffeonse relatio				NG trend

EPA MRID Number 48671309

DER Template Version: 22 September 2011

Page 50 of 77

EPA MRID Number 48671309

Tukey -	two-sid	ed tests,	all possil	ole compari	.sons, no	ot used i	for NOEC	or LOEC
Level	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dose1		Tukey p-v Dose3	
Dose5		Pvarae	mean	p varae	20001	20002	20000	20201
Ctrl	-0.27		-0.27				•	
Dose1	-0.27	0.999	-0.27	0.480				
Dose2	-0.29	0.865	-0.29	0.279	0.990		•	•
Dose3	-0.29	0.821	-0.29	0.289	0.982	1.000	•	•
Dose4	-0.28	0.955	-0.29	0.295	0.999	1.000	1.000	•
Dose5	-0.30	0.552	-0.30	0.134	0.878	0.996	0.998	0.978
*** NON-PARA Krus Deg MannWhit	METRIC kal-Wal grees of 5 : - test	ANALYSES lis test Freedom ing each	- use a - equality TestStat 2.68 trt median	************ lpha-level= among trea P-value 0.749 signif. di ponse relat	=0.05 for atment gr e fferent	from cor	sts ntrol	
Level Ctrl Dose1 Dose3 Dose4 Dose5 INCREAS	Medi -0. -0. -0. -0. -0. -0.	25 28 28 29 28		t p-value 0.676 0.233 0.491 0.341 0.233 LOWEST CC	DNCENTRAI		eere p-va 0.281 0.093 0.095 0.159 0.113 NIF. GREA	
	heere							
	-			tudy – Glyp 2 (7-d st		lian))		
			PARAMETRIC ormality o:	C ANALYSIS f Residuals	s alpł	na-level=	=0.01	

Page 51 of 77

EPA MRID Number 48671309

Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.665 <.001 3.600 0.020 USE NON-PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval

 Ctrl 4
 53.25
 0.50

 Dosel 4
 53.25
 0.50

 Dose2 4
 53.00
 0.00

 Dose3 4
 53.25
 0.50

 Dose4 4
 53.25
 0.50

 Dose5 4
 53.00
 0.00

 0.25 0.94 52.45, 54.05 0.25 0.94 52.45, 54.05 ., . 52.45, 54.05 0.00 0.00 0.94 0.25 0.25 0.94 52.45, 54.05 0.00 0.00 • , Median Min Max %of Control(means) Level 53.0053.0054.0053.0053.0054.0053.0053.0053.0053.0053.0054.0053.0053.0054.0053.0053.0054.00 %Reduction(means) Ctrl 53.00 53.00 0.00 Dose1 100.00 Dose2 99.53 0.47 100.00 Dose3 0.00 100.00 Dose4 0.00 99.53 Dose5 0.47 * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 5 0.40 0.842 18 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values p-value mean p-value Dose1 Dose2 Dose3 Dose4 Dose5 Ctrl 53.25 . 53.25 Dose1 53.25 1.000 53.25 0.583 . . .

Page 52 of 77

						EPA N	ARID Numb	er 48671309
Dose2	53.00	0.853	53.17	0.489	0.950			
•	53.25		53.17	0.506	1.000	• 0.950	•	•
Dose3	05.20	1.000	JJ.17	0.306	1.000	0.950	•	•
Dose4	53.25	1.000	53.17	0.517	1.000	0.950	1.000	
Dose5	53.00	0.853	53.00	0.273	0.950	1.000	0.950	0.950
	******	* * * * * * * * * *	* * * * * * * * * *	*****	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *
* * *								
Krus	kal-Wall	ANALYSES lis test - Freedom	- use al equality TestStat 2.30	-	atment gr e		sts	
		-	rt median dose-resp	-				ve trend
Level	Media		MannWhit	p-value		Jonckhe	eere p-va	alue
Ctrl	53.0			•			•	
Dose1	53.0			1.000			0.500	
Dose2	53.0			0.478			0.182	
Dose3	53.0			1.000			0.391	
Dose4	53.0			1.000			0.500	
Dose5	53.0	00		0.478		(0.265	
CONTROL Willi	_	ND TEST SU	MMARY	LOWEST C	ONCENTRAI	CION SIGN	NIF. LESS	5 THAN
		ﻮﺭ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ ﺑﻪ	* * * * * * * * * *	ﻮ 	لہ بلہ بلہ بلہ بلہ بلہ بلہ بلہ بلہ		به بله بله بله بله بله بله بله بله بله	
***		* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *		* * * * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~
PARAMETF Anal		Variance	use alpha- (ANOVA) - minator df	overall F	-test t B			
Williams	s – test	assumes d	t mean sig ose-respon all possib	se relati	onship, t	esting 1	INCREASIN	
Level	Mean			Williams		-	Tukey p-v	
Dose5		p-value	mean	p-value	Dosel	Dose2	Dose3	Dose4

EPA MRID Number 48671309

Page 53 of 77

EPA MRID Number 48671309

Ctrl	-53.25		-53.17					
Dosel	-53.25	1.000	-53.17	0.700				
Dose2	-53.00	0.853	-53.17	0.735	0.950			•
Dose3	-53.25	1.000	-53.17	0.753	1.000	0.950	•	
Dose4	-53.25	1.000	-53.17	0.765	1.000	0.950	1.000	
Dose5	-53.00	0.853	-53.17	0.773	0.950	1.000	0.950	0.950
* * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	*****	* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * * *
Kru	AMETRIC A skal-Wall grees of 5	is test -	- use alp equality a TestStat 2.30	mong trea	tment gr		ts	
		-	rt median s dose-respo	-				SING
Level	Media -53.0		MannWhit	p-value		Jonckhe	ere p-va	alue
C+r1				•			•	
Ctrl Dosel				1 000		0	500	
Dosel	-53.0	0		1.000			.500	
Dose1 Dose2	-53.0 -53.0	0 0		0.478		C	.818	
Dose1 Dose2 Dose3	-53.0 -53.0 -53.0	0 0 0		0.478 1.000		0 0	.818 .609	
Dose1 Dose2	-53.0 -53.0 -53.0 -53.0	0 0 0		0.478		0 0 0	.818	
Dose1 Dose2 Dose3 Dose4 Dose5 INCREA CONTROL Will	-53.0 -53.0 -53.0 -53.0 -53.0 SING TREN	0 0 0		0.478 1.000 1.000	NCENTRAT	0 0 0 0	.818 .609 .500 .735	ATER THAN
Dose1 Dose2 Dose3 Dose4 Dose5 INCREA CONTROL Will Jonc test fo	-53.0 -53.0 -53.0 -53.0 -53.0 SING TREN iams kheere r amphib	0 0 0 0 D TEST SU metamorph		0.478 1.000 1.000 0.478 LOWEST CO	hosate	0 0 0 10n sign	.818 .609 .500 .735	ATER THAN
Dosel Dose2 Dose3 Dose4 Dose5 INCREA CONTROL Will Jonc test fo ANALYSI TESTS O Shapiro Levenes level=0 Use par analyse	-53.0 -53.0 -53.0 -53.0 SING TREN iams kheere r amphib S RESULTS F ASSUMPT -Wilks te test for .05 ametric a	0 0 0 0 D TEST SU metamorph FOR VARI IONS FOR st for No homogene nalyses i	MMARY screen stu ABLE VAR03 PARAMETRIC rmality of ity of vari f neither t	0.478 1.000 1.000 0.478 LOWEST CO dy - Glyp (7-d sn ANALYSIS Residuals ance (abso	hosate -vent le alph lute res	0 0 10N SIGN ngth (mm a-level= iduals)	<pre>.818 .609 .500 .735 UIF. GREA </pre>	1-

Page 54 of 77

						EFA		Del 400/1509
0. TESTS	.857	0.00	3	1.251	0.327	USE	NON-PARAM	ETRIC
* * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * * *	* * * * * * * * *
		STATISTICS						
Level			dDev	StdErr	Coef of	Var	95% Conf.	
Ctrl			1.00	0.50	6.35		14.23,	
Dosel			0.37	0.18	2.30		15.32,	16.48
Dose2			0.75	0.37	4.62		14.94,	17.31
Dose3	4	16.08	0.79	0.40	4.93		14.81,	17.34
Dose4	4	16.10	0.37	0.19	2.32		15.50, 14.50,	16.70
Dose5	4	16.10	1.00	0.50	6.23		14.50,	17.70
Level			Min	Max %	of Control	(means)		
%Reducti		,						
Ctrl			5.10	17.30	•		•	
Dosel			5.50	16.30	100.47		-0.	47
Dose2		15.90 1	5.50	17.20	101.90		-1.	90
Dose3		15.90 1	5.40	17.10	101.58		-1.	58
Dose4		16.05 1	5.70	16.60	101.74		-1.	74
Dose5		15.65 1	5.50	17.60	101.74		-1.	74
*** PARAMETE	RIC ANA		use alpha	a-level=0	.05 for al			* * * * * * * * *
Anal	lysis o	f Variance			F-test			
Nur	nerator	df Den	ominator d	df F-s	tat	P-value		
	5	1	8	0.	11	0.989		
Williams	s - tes	ing each t t assumes ded tests,	dose-respo	onse rela	tionship,	testing	negative	
Level	Mean	Dunnett p-value	Isotonic mean	William p-valu	-	Dose2	Tukey p- Dose3	
Dose5		pvarae	mean	p varu	e Dosei	DOSCZ	00300	00304
Ctrl	15.83		16.02					
Dosel	15.90	1.000	16.02	0.728		•		
Dose2	16.13	0.971	16.02	0.762	0.998	•		
Dose3	16.08	0.986	16.02	0.780	0.999	1.000		
Dose4	16.10	0.979	16.02	0.791	0.999	1.000	1.000	•

EPA MRID Number 48671309

Page 55 of 77

EPA MRID Number 48671309

Dose5	16.10	0.979	16.02	0.799	0.999	1.000	1.000	1.000
* * * * * * * *	* * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *
Krus	skal-Wal		- equality TestStat	lpha-level among trea P-value 0.83	atment gi e		sts	
				signif. d ponse relat				ve trend
Level	Medi		MannWhi	t p-value		Jonckhe	eere p-va	alue
Ctrl	15.			•			•	
Dosel				0.494			0.807	
Dose2				0.494			0.830	
Dose3				0.678).744	
Dose4				0.346).849	
Dose5	15.	65		0.413		().769	
CONTROL Will: Jonc] **** PARAMETH	iams kheere ******** RIC ANAL	YSES -	********* use alpha	LOWEST CC ********** -level=0.03 overall F	******** 5 for all	* * * * * * * * *		
Nur				f F-stat				
	5	18	3	0.11	().989		
William	s – test	assumes o	lose-respo	gnif. diffe nse relatio ble compar:	onship, t	esting 1	INCREASI	
Level	Mean	Dunnett	Isotonic	Williams		7	Tukey p-v	values
Dose5		p-value	mean	p-value	Dose1	Dose2	Dose3	Dose4
Ctrl	-15.83	•	-15.83	•	•	•	•	•
Dosel	-15.90	1.000	-15.90	0.524	•		•	
Dose2	-16.13	0.971	-16.10	0.392	0.998	•		•

Page 56 of 77

Data Evaluation Record on the Toxicity of Glyphosate to Amphibians, Metamorphosis Assay	Data Evaluation	Record on the	Toxicity of	Glyphosate t	o Amphibians,	Metamorphosis Assay
---	-----------------	---------------	-------------	--------------	---------------	---------------------

EPA MRID Number 48671309 Dose3 -16.08 0.986 -16.10 0.406 0.999 1.000 . Dose4 -16.10 0.979 -16.10 0.415 0.999 1.000 1.000 Dose5 -16.10 0.979 -16.10 0.421 0.999 1.000 1.000 1.000 * * * NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 5 2.10 0.835 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing INCREASING trend Level Median MannWhit p-value Jonckheere p-value -15.45 Ctrl 0.494 Dose1 -15.90 0.193 -15.90 0.494 0.170 Dose2 0.256 -15.90 0.678 Dose3 -16.05 0.151 Dose4 0.346 Dose5 -15.65 0.413 0.231 INCREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. GREATER THAN CONTROL Williams Jonckheere test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR04 (7-d hind-limb length (mm)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.970 0.676 1.575 0.217 USE PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval

Page 57 of 77

					•	EPA	MRID Numb	er 48671309
Ctrl Dose1 Dose2 Dose3 Dose4 Dose5	4 4 4 4	2.10 2.15 1.75 2.08	0.10 0.08 0.17 0.21 0.10 0.14	0.05 0.04 0.09 0.10 0.05 0.07	4.61 3.89 8.06 11.90 4.61 6.73		1.92, 1.97, 1.87, 1.42, 1.92, 1.87,	2.23 2.43 2.08 2.23
Level %Reducti Ctrl	on (mean	ns) 2.05	2.00	2.20	of Control(means)		
Dose1 Dose2 Dose3 Dose4 Dose5		2.15 1.75 2.05	2.00 2.00 1.50 2.00 2.00	2.20 2.30 2.00 2.20 2.30	101.20 103.61 84.34 100.00 101.20		-1.2 -3.0 15.0 0.0	51 56 00
******* *** PARAMETF	******** RIC ANAL	.YSES -	* * * * * * * * * *	********* a-level=0	**************************************			
Dunnett		1 .ng each t		4. .gnif. di	29 0 fferent tha			
			all possi	ble comp	tionship, t arisons, no		for NOEC	or LOEC
Level Dose5	Mean	Dunnett p-value		William p-valu		Dose2	Tukey p-v Dose3	values Dose4
Ctrl	2.08		2.11					
Dosel	2.10	0.999	2.11	0.717	•	•	•	
Dose2	2.15	0.907	2.11	0.752	0.995	•		
Dose3	1.75	0.017	1.98	0.216	0.025	0.009	•	•
Dose4	2.08	1.000	1.98	0.220	1.000	0.972	0.041	
Dose5	2.10	0.999	1.98	0.224	1.000	0.995	0.025	1.000
* * *					*********			* * * * * * * * *
				-	el=0.05 for reatment gr		2515	

Page 58 of 77

EPA MRID Number 48671309

Degrees of Freedom TestStat P-value 5 8.70 0.122 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing negative trend Level Median MannWhit p-value Jonckheere p-value 2.05 Ctrl 2.10 0.769 0.677 Dose1 2.15 0.656 0.756 Dose2 0.096 0.050 Dose3 1.75 2.05 1.000 0.175 Dose4 2.05 1.000 0.346 Dose5 DECREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. LESS THAN CONTROL Williams Jonckheere * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 4.29 5 18 0.010 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing INCREASING trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values p-value mean p-value Dose1 Dose2 Dose3 Dose4 Dose5 . -2.08 -2.02 Ctrl • . . Dose1 -2.10 0.999 -2.02 0.795 . . 0.907 Dose2 -2.15 -2.02 0.826 0.995 . Dose3 -1.75 0.017 -2.02 0.843 0.025 0.009 Dose4 -2.08 1.000 -2.08 0.648 1.000 0.972 0.041 . Dose5 -2.10 0.999 -2.10 0.541 1.000 0.995 0.025 1.000

Page 59 of 77

EPA MRID Number 48671309

* * * NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 8.70 5 0.122 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing INCREASING trend MannWhit p-value Jonckheere p-value Level Median -2.05 . Ctrl Dosel -2.10 Dose2 -2.15 Dose3 -1.75 0.769 0.323 0.656 0.244 0.096 0.950 -2.05 Dose4 1.000 0.825 Dose5 -2.05 1.000 0.654 INCREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. GREATER THAN CONTROL Williams Jonckheere test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR05 (7-d norm hind-limb) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.818 <.001 2.508 0.068 USE NON-PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS DASIC SOMMART STATISTICSLevel NMeanStdDevStdErrCoef of Var95% Conf.IntervalCtrl 40.130.000.000.00. , .Dose1 40.130.010.003.770.12, 0.14Dose2 40.130.010.006.280.12, 0.14Dose3 40.110.010.0113.320.09, 0.13Dose4 40.130.010.006.280.12, 0.14Dose5 40.130.000.000.00. , .

Page 60 of 77

							EFA		ber 4867130
Level	-	dian	Min	Max	%of	Control	(means)		
%Reduct:	ion(mean	s)							
Ctrl		0.13	0.13	0.13					
Dose1		0.13	0.13	0.14		101.92		-1.	92
Dose2		0.13	0.12	0.14		100.00		0.0	00
Dose3		0.12	0.09	0.12		84.42		15.	58
Dose4		0.13	0.12	0.14		100.00		0.	00
Dose5		0.13	0.13	0.13		100.00		0.0	00
* * * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	* * * * * * *	****	* * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * * *
	RIC ANAL	YSES -	- use alpha	a-level	=0.05	for all	l tests		
			e (ANOVA) ·						
Nur	merator	df Der	nominator d	df F	-stat]	P-value		
	5	1	8		4.70	(0.006		
Dunnett	- testi	ng each t	trt mean s	ignif.	diffe	rent tha	an contr	ol	
			dose-resp						trend
			all poss						
		,	F		T	,			
Level	Mean	Dunnett	Isotonic	Willi	ams			Tukey p-	values
		p-value	mean	p-va	lue	Dose1		Dose3	
Dose5		-		-					
Ctrl	0.13		0.13						
Dose1	0.13	0.988	0.13	0.6	75				
Dose2	0.13	1.000	0.13	0.6	18	0.997			
Dose3	0.11	0.008	0.12	0.1	58	0.008	0.020		
	0.111		0.11	0.1	00		0.020	•	•
Dose4	0.13	1.000	0.12	0.1	61	0.997	1.000	0.020	
20001	0.10	±.000	0.12	0.1	01	0.00,	1.000	0.020	·
Dose5	0.13	1.000	0.12	0.1	63	0.997	1.000	0.020	1.000
DOSES	0.13	1.000	0.12	0.1	0.5	0.557	1.000	0.020	1.000
•									
******	* * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	******	****	******	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *
* * *									
			_ 110.0	olobo 1	orro 1 —	0 05 5	~ _]] +-	a + a	
		ANALYSES						515	
			- equality				Loups		
Deg		Freedom							
	5		12.00		0.035				
							-		
MannWhit	t – test	ing each	trt media	n signi	f. di	fferent	from co	ntrol	

EPA MRID Number 48671309

MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing negative trend

Page 61 of 77

Data Evaluation	Record on the	e Toxicity of	Glyphosate	to Amphibians,	Metamorphosis Assay	

EPA MRID Number 48671309

CONTROL Willi	-	13 13 13 12 13	MannWhit JMMARY	p-value 0.478 1.000 0.053 1.000 1.000 LOWEST CC	NCENTRAI		0.841 0.539 0.010 0.106 0.260 SNIF. LESS	
* * * * * * * * *	· • • • • • • • • • • •	+++++++++	* * * * * * * * * * * *	* * * * * * * * * * *	· + + + + + + + + + + + + + + + + + + +	· + + + + + + + + + + + + + + + + + + +	· • • • • • • • • • • • • • • • • • • •	· + + + + + + + + + + + + + + + + + + +
***		~ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~			
PARAMETE			use alpha-			tests		
	erator ((ANOVA) - (minator df			-value		
	5	18	3	4.70	C	.006		
Williams	s – test	assumes o	rt mean sign lose-respon all possibl	se relatic	onship, t	esting	INCREASIN	
Level Dose5	Mean	Dunnett p-value		Williams p-value	Dosel	Dose2	Tukey p-v Dose3	
DOSEJ								
Ctrl	-0.13	•	-0.13		•	•	•	
Dosel	-0.13	0.988	-0.13	0.858				
Dose2	-0.13	1.000	-0.13	0.884	0.997			
Dose3	-0.11	0.008	-0.13	0.898	0.008	0.020		
Dose4	-0.13	1.000	-0.13	0.648	0.997	1.000	0.020	
Dose5	-0.13	1.000	-0.13	0.656	0.997	1.000	0.020	1.000
•								
* * * * * * * *	******	* * * * * * * * * *	**********	* * * * * * * * * *	******	******	* * * * * * * * * *	******
NON-PARA Krus	kal-Wal		- use alg - equality a TestStat 12.00	pha-level= among trea P-value 0.035	tment gr		ests	

Page 62 of 77

EPA MRID Number 48671309

MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing INCREASING trend Level Median MannWhit p-value Jonckheere p-value -0.13 Ctrl 0.478 0.159 Dosel -0.13 1.000 Dose2 -0.13 0.461 0.053 0.990 Dose3 -0.12 Dose4 -0.13 1.000 0.894 -0.13 1.000 0.740 Dose5 INCREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. GREATER THAN CONTROL Williams Jonckheere test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR06 (21-d stage (median)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Conclusion Test Stat P-value Test Stat P-value 0.463 <.001 9.000 <.001 USE NON-PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval
 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00

 0.00
 0.00
 Ctrl 4 57.00 0.00 • • Ctrl457.000.00Dose1457.000.00Dose2457.000.00Dose3457.000.00Dose4456.750.50Dose5457.000.00 • • • • . . 0.25 0.88 55.95, 57.55 0.00 0.00 • • . Level Median Min Max %of Control(means) %Reduction(means) Ctrl57.0057.0057.00Dose157.0057.0057.00 100.00 100.00 0.00 57.00 57.00 57.00 0.00 Dose2 57.00 57.00 Dose3 57.00 100.00 0.00

Page 63 of 77

						EPA	MRID Numb	er 48671309
Dose4 Dose5				57.00 57.00	99.56 100.00		0.4	
*** PARAMETE Anal	RIC ANAL	AYSES - Variance df Den	use alpha	-level=0.09 overall F- f F-stat 1.00	5 for al -test		*****	*****
Williams	s – test	assumes	dose-respo	gnif. diffe nse relationse compari	onship, [.]	testing	negative	
Level Dose5	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dose1		Tukey p- Dose3	values Dose4
Ctrl	57.00		57.00		•			
Dosel	57.00	1.000	57.00	0.583	•	•	•	
Dose2	57.00	1.000	57.00	0.618	1.000		•	
Dose3	57.00	1.000	57.00	0.636	1.000	1.000		
Dose4	56.75	0.320	56.88	0.269	0.530	0.530	0.530	
Dose5	57.00	1.000	56.88	0.273	1.000	1.000	1.000	0.530
*** NON-PARA Krus	AMETRIC skal-Wal	ANALYSES	- use a	<pre>************************************</pre>	=0.05 fo: atment g:	r all te		* * * * * * * *
				signif. d: ponse relat				ve trend
Level Ctrl Dose1 Dose2 Dose3 Dose4 Dose5	Medi 57. 57. 57. 57. 57. 57.	00 00 00 00 00 00	MannWhi	t p-value 1.000 1.000 1.000 0.478 1.000			eere p-va 0.079 0.190	alue

EPA MRID Number 48671309

Page 64 of 77

EPA MRID Number 48671309

DECREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. LESS THAN CONTROL Williams Jonckheere +++ PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 0.446 5 18 1.00 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing INCREASING trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values p-value mean p-value Dose1 Dose2 Dose3 Dose4 Dose5 . Ctrl -57.00 -56.95 • . 1.000 Dose1 -57.00 -56.95 0.721 . . 1.000 Dose2 -57.00 1.000 -56.95 0.756 Dose3 -57.00 1.000 -56.95 0.774 1.000 1.000 . . Dose4 -56.75 0.320 -56.95 0.785 0.530 0.530 0.530 . Dose5 -57.00 1.000 -57.00 0.656 1.000 1.000 0.530 * * * NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 5 5.00 0.416 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing INCREASING trend MannWhit p-value Level Median Jonckheere p-value Ctrl -57.00 1.000 Dose1 -57.00

Page 65 of 77

EPA MRID Number 48671309

Dose2	-57.00		1.000									
Dose3	-57.00		1.000		•							
	-57.00		0.478		0.921							
	-57.00		1.000		0.810							
DOSCO	57.00		1.000		0.010							
INCREASING TREND TEST SUMMARY CONTROL Williams Jonckheere												
test for amphib metamorph screen study – Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR07 (21-d wet weight (g))												
TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS												
Shapiro-Wilks test for Normality of Residuals alpha-level=0.01 Levenes test for homogeneity of variance(absolute residuals) alpha-												
level=0.0		geneity of	variance (a	osolute resi	duais) aipna	[-						
		nos if poith	or tost ro	tostod otho	rwise non-param	otria						
analyses.	etric analys	ses II neith	lei lest ie	jected, othe	iwise non-paran	letite						
-	-Wilks Shap	iro-Wilks	Levenes	Levenes	Conclusion							
	Stat P-				concrusion							
		.844			USE PARAMETRIC	TESTS						
0.9	,,,	.011	0.100	0.700		, 10010						

BASIC SUM	MARY STATISI	TICS										
Level N	Mean	StdDev	StdErr	Coef of Va	r 95% Conf.I	Interval						
Ctrl	4 0.86	0.04	0.02	4.37	0.80,							
Dose1			0.05	10.77	0.77,	1.08						
Dose2		0.08	0.04	8.56	0.78,	1.03						
Dose3		0.04	0.02	3.82	0.91,	1.03						
Dose4		0.06	0.03	6.09	0.83,	1.01						
Dose5	4 1.01	0.06	0.03	5.91	0.91,	1.10						
		!										
Level	Median	Min	Max %	of Control(m	eans)							
%Reductio	(0 0 2	0 00									
Ctrl	0.86		0.90	•	• 7 1	2						
Dosel Dose2	0.92	0.81 0.85	1.05	107.12 105.04	-7.1							
Dose3		0.94	1.02	112.71	-5.04 -12.71							
Dose4	0.95		0.95	106.51	-6.5							
Dose5	1.03		1.05	116.79	-16.79							
DODCO	1.00	0.52	1.00	110.19	10.7	2						
* * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	****	* * * * * * * * * * * *	* * * * * * * * * * * * * * *	*****						

PARAMETRI	C ANALYSES	- use alp	ha-level=0	.05 for all	tests							
	sis of Varia	-										
Numerator df Denominator df F-stat P-value												

Page 66 of 77

EPA MRID Number 48671309 5 18 2.46 0.072 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values p-value mean p-value Dosel Dose2 Dose3 Dose4 Dose5 Ctrl 0.86 0.93 Dosel 0.93 0.551 0.93 0.964 Dose2 0.91 0.809 0.93 0.974 0.999 . Dose3 0.97 0.105 0.93 0.979 0.895 0.705 . . Dose4 0.92 0.628 0.93 0.982 1.000 1.000 0.849 Dose5 1.01 0.023 0.93 0.984 0.483 0.284 0.970 0.419 * * * NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 5 10.28 0.068 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing negative trend Level Median MannWhit p-value Jonckheere p-value 0.86 Ctrl 0.92 0.346 0.876 Dose1 0.810 Dose2 0.88 0.346 Dose3 0.96 0.066 0.984 Dose4 0.95 0.154 0.964 Dose5 1.03 0.067 0.996 DECREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. LESS THAN CONTROL Williams Jonckheere

Data Evaluation Record on the Toxicity of Glyphosate to Amphibians, Metamorphosis Assay

Page 67 of 77

EPA MRID Number 48671309

PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 5 18 2.46 0.072												
Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing INCREASING trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC												
Level	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dosel	Dose2	Tukey p- Dose3	values Dose4				
Dose5		-		-								
Ctrl	-0.86		-0.86		•	•	•					
Dosel	-0.93	0.551	-0.92	0.160	•							
Dose2	-0.91	0.809	-0.92	0.171	0.999							
Dose3	-0.97	0.105	-0.95	0.056	0.895	0.705						
Dose4	-0.92	0.628	-0.95	0.057	1.000	1.000	0.849	•				
Dose5	-1.01	0.023	-1.01	0.003	0.483	0.284	0.970	0.419				
•												
<pre>************************************</pre>												
MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing INCREASING trend												
Level Ctrl	Medi -0.		MannWhi	t p-value		Jonckh	neere p-v	alue				
Dosel	-0.	92		0.346			0.124					
Dose2	-0.			0.346			0.190					
Dose3				0.066			0.016					
Dose4 Dose5				0.154 0.067			0.036 0.004					
Dose5 -1.03 0.067 0.004 INCREASING TREND TEST SUMMARY CONTROL Williams												

Page 68 of 77

Jonckheere test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR08 (21-d sn-vent length (mm)) TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals -- alpha-level=0.01 Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.965 0.541 3.882 0.015 USE NON-PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval Ctrl 4 23.23 0.43 0.21 1.84 22.55, 23.90 Dosel 4 23.58 0.69 0.34 2.93 22.48, 24.67

 Dose1
 4
 23.36
 0.05

 Dose2
 4
 23.48
 0.85

 Dose3
 4
 24.43
 0.17

 Dose4
 4
 23.80
 0.47

 Dose5
 4
 24.78
 0.36

 0.09 0.23 0.18 3.64 22.12, 0.43 24.83 0.70 24.15, 24.70 1.97 23.05, 24.55 24.20, 25.35 1.45 Level Median Min Max %of Control(means) %Reduction(means) Ctrl23.2522.7023.70.Dose123.6522.7024.30101.51Dose223.4022.7024.40101.08Dose324.4524.2024.60105.17 -1.51 -1.08 -5.17 Dose4 24.00 23.10 24.10 102.48 -2.48 24.85 24.30 25.10 106.67 -6.67 Dose5 * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 5 18 4.87 0.005 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values

Page 69 of 77

p-value mean p-value Dosel Dose2 Dose3 Dose4 Dose5 Ctrl 23.23 23.88 . . . • Dosel 23.58 0.827 23.88 0.977 . . Dose2 23.48 0.946 23.88 0.984 1.000 . . Dose3 24.43 0.024 23.88 0.988 0.278 0.183 . Dose4 23.80 0.448 23.88 0.989 0.991 0.954 0.591 . Dose5 24.78 0.003 23.88 0.990 0.055 0.033 0.938 0.164 * * * NON-PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Kruskal-Wallis test - equality among treatment groups Degrees of Freedom TestStat P-value 5 14.86 0.011 MannWhit - testing each trt median signif. different from control Jonckheere - test assumes dose-response relationship, testing negative trend MannWhit p-value Level Median Jonckheere p-value Ctrl 23.25 Dose1 23.65 0.489 0.810 23.40 0.770 Dose2 0.780 24.45 Dose3 0.067 0.994 24.00 Dose4 0.187 0.969 Dose5 24.85 0.067 0.999 DECREASING TREND TEST SUMMARY LOWEST CONCENTRATION SIGNIF. LESS THAN CONTROL Williams Jonckheere * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 18 4.87 5 0.005 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing INCREASING trend

Data Evaluation Record on the Toxicity of Glyphosate to Amphibians, Metamorphosis Assay

EPA MRID Number 48671309

DER Template Version: 22 September 2011

Page 70 of 77

EPA MRID Number 48671309

Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC									
Level	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dose1		Tukey p-v Dose3	values Dose4	
Dose5		b varue	mean	p varue	DOBET	DOSEZ	DOSES	DOSET	
Ctrl	-23.23		-23.23	•				•	
Dose1	-23.58	0.827	-23.53	0.266			•	•	
Dose2	-23.48	0.946	-23.53	0.284	1.000			•	
Dose3	-24.43	0.024	-24.11	0.020	0.278	0.183	•	•	
Dose4	-23.80	0.448	-24.11	0.020	0.991	0.954	0.591	•	
Dose5	-24.78	0.003	-24.78	<.001	0.055	0.033	0.938	0.164	
*** NON-PARA Krus Deg MannWhit	AMETRIC skal-Wal grees of 5 t - test	ANALYSES lis test Freedom ing each	- use a - equality TestStat 14.86 trt median	**************************************	=0.05 for atment gr e	from cor	sts htrol		
trend	ere – te	st assume	s dose-res	ponse relat	lonsnip,	testing	J INCREAS	SING	
Dose2	Ctrl -23.25 . . Dosel -23.65 0.489 0.190 Dose2 -23.40 0.780 0.230 Dose3 -24.45 0.067 0.006 Dose4 -24.00 0.187 0.031								
INCREASING TREND TEST SUMMARY CONTROL Williams Jonckheere									
	test for amphib metamorph screen study - Glyphosate ANALYSIS RESULTS FOR VARIABLE VAR09 (21-d hind-limb length (mm))								
	TESTS OF ASSUMPTIONS FOR PARAMETRIC ANALYSIS Shapiro-Wilks test for Normality of Residuals alpha-level=0.01								

Page 71 of 77

EPA MRID Number 48671309

Levenes test for homogeneity of variance (absolute residuals) -- alphalevel=0.05 Use parametric analyses if neither test rejected, otherwise non-parametric analyses. Shapiro-Wilks Shapiro-Wilks Levenes Levenes Conclusion Test Stat P-value Test Stat P-value 0.921 0.062 0.622 0.685 USE PARAMETRIC TESTS * * * BASIC SUMMARY STATISTICS Level N Mean StdDev StdErr Coef of Var 95% Conf.Interval 7.65 0.68 0.34 8.90 0.11 2.62 6.57, 8.73 Ctrl 4 Dose148.480.22Dose247.780.43Dose348.200.50Dose448.000.69Dose548.250.79 8.12, 8.83 7.10, 0.21 5.49 8.45 6.14 9.00 0.25 7.40, 9.09 8.60 0.34 6.91, 0.39 7.00, 9.50 9.52 Level Median Min Max %of Control(means) %Reduction(means) 7.80 6.70 8.30 Ctrl 8.20 7.30 7.50 7.00 8.50 8.70 110.78 -10.78 Dose1 8.30101.658.70107.198.50104.58107.84 7.75 Dose2 -1.63 Dose3 8.30 -7.19 -4.58 Dose4 8.25 8.35 7.20 Dose5 -7.84 * * * PARAMETRIC ANALYSES - use alpha-level=0.05 for all tests Analysis of Variance (ANOVA) - overall F-test Numerator df Denominator df F-stat P-value 5 18 1.13 0.379 Dunnett - testing each trt mean signif. different than control Williams - test assumes dose-response relationship, testing negative trend Tukey - two-sided tests, all possible comparisons, not used for NOEC or LOEC Level Mean Dunnett Isotonic Williams Tukey p-values p-value mean p-value Dose1 Dose2 Dose3 Dose4 Dose5 Ctrl 7.65 . 8.06 Dosel 8.48 0.207 8.06 0.901 . .

Page 72 of 77

						EPA N	VIRID NUMB	er 486/1309
Dose2	7.78	0.998	8.06	0.920	0.550	•		
Dose3	8.20	0.552	8.06	0.931	0.983	0.901		
Dose4	8.00	0.862	8.06	0.937	0.853	0.993	0.996	
Dose5	8.25	0.474	8.06	0.941	0.993	0.853	1.000	0.989
•								
********	******	* * * * * * * * * *	* * * * * * * * * * *	******	* * * * * * * * *	*******	* * * * * * * * *	******
Krusł	kal-Wall		- use al equality TestStat 6.59	-	atment gr e		sts	
		-	rt median dose-resp	-				ve trend
Level Ctrl	Media 7.8		MannWhit	p-value		Jonckhe	eere p-va	alue
Dose1	8.5			0.103		ſ).978	
Dose2	7.			1.000			0.500	
Dose3	8.3			0.335			0.698	
Dose4	8.2			0.346			0.680	
Dose4 Dose5	8.3			0.283).792	
DECREASI CONTROL Willia Jonckh	ams	ND TEST SU	MMARY	LOWEST C	ONCENTRAI	TION SIGN	NIF. LESS	5 THAN
* * * * * * * * *	* * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	*******	* * * * * * * * *	* * * * * * * * *
* * *								
			use alpha- (ANOVA) -			tests		
Nume	erator d 5	df Deno 18	minator df	F-sta 1.13	-	?-value).379		
Williams	- test	assumes d	t mean sig ose-respon all possib	se relati	onship, t	esting 1	INCREASIN	
Level Dose5	Mean	Dunnett p-value	Isotonic mean	Williams p-value	Dosel	Dose2	Tukey p-v Dose3	values Dose4

EPA MRID Number 48671309

Page 73 of 77

						EPA I	MRID Numb	per 48671309
Ctrl	-7.65		-7.65					
Dosel	-8.48	0.207	-8.11	0.165				
Dose2	-7.78	0.998	-8.11	0.176	0.550	•	•	
Dose3	-8.20	0.552	-8.11	0.182	0.983	0.901	•	•
Dose4	-8.00	0.862	-8.11	0.186	0.853	0.993	0.996	
Dose5	-8.25	0.474	-8.25	0.108	0.993	0.853	1.000	0.989
*** NON-PARA Krus Dec MannWhit	AMETRIC <i>A</i> skal-Wall grees of 5 t - testi	ANALYSES is test Freedom .ng each	- use al - equality TestStat 6.59 trt median s dose-resp	pha-level among tre P-valu 0.25 signif. d	=0.05 for atment gr e 3 ifferent	r all tes roups from con	sts ntrol	
trend	Media		-		_ `		eere p-va	
Ctrl	-7.8		Maiiliwiiitu	p-value		JOIICKIR	·	alue
Dose1	-8.5			0.103			0.022	
Dose2	-7.7			1.000			0.500	
Dose3 Dose4	-8.3			0.335 0.346			0.302 0.320	
Dose5	-8.3			0.283			0.208	
CONTROL Willi		ND TEST S	UMMARY	LOWEST C	ONCENTRA	FION SIGN	NIF. GREA	ATER THAN
	-	-	h screen st IABLE VAR10		-	d-limb)		
Shapiro- Levenes level=0. Use para analyses	Wilks te test for 05 ametric a	est for N r homogen analyses	PARAMETRIC ormality of eity of var if neither	Residual iance(abs test reje	s alph olute res cted, oth	siduals) nerwise n	alpha non-param	
-	co-Wilks Stat	Shapiro P-val		evenes st Stat	Levenes P-value	CONCLI	USION	

DER Template Version: 22 September 2011

Page 74 of 77

								400/1509
0.	.924		0.072	0.429	0.822	USE	PARAMETRIC	TESTS
* * * * * * * *	* * * * * * *	*****	*****	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * *	* * * * * * * * * * * *	* * * * * * * *
* * *								
BASIC SU	JMMARY	STATIS	TICS					
Level	N	Mean	StdDev	StdErr	Coef of	Var	95% Conf.I	
Ctrl		••••	0.03	0.01	7.74		0.28,	
Dosel			0.01	0.01	3.64		0.33,	
Dose2		0.33	0.01	0.01	4.29		0.31,	0.35
Dose3		0.34	0.02	0.01	5.17		0.31,	0.36
Dose4		0.34	0.02	0.01			0.30,	0.37
Dose5	4	0.33	0.03	0.01	7.52		0.29,	0.37
Level	Ν	ledian	Min	Max	%of Contro	l(means)		
%Reducti	ion (mea							
Ctrl		0.33	0.29	0.35			•	
Dosel		0.36	0.34	0.37	109.23		-9.2	
Dose2		0.33	0.32	0.35	101.54		-1.5	
Dose3		0.34	0.31	0.35	103.08		-3.0	
Dose4		0.35	0.30	0.35	103.08		-3.0	
Dose5		0.34	0.30	0.36	102.31		-2.3	1
*** PARAMETI Anal	RIC ANA lysis c	LYSES of Vari	- use ance (ANO	alpha-level VA) - overa		ll tests	5	* * * * * * * *
Nur	nerator 5	df	Denomina 18		-stat 1.02	0.434	2	
	C		10		1.02	0.434		
Williams	s – tes	st assu	mes dose-	response re	different t lationship, mparisons,	testing	g negative [.]	
Level	Mean	Dunn					Tukey p-va	
		p-va	lue me	an p-va	lue Dosel	Dose2	2 Dose3	Dose4
Dose5								
Ctrl	0.33	3.	0	.34 .				
•								
Dose1	0.36	0.1	.80 0	.34 0.9	. 08	•	•	•
Dose2	0.33	8 0.9	96 0	.33 0.8	30 0.528		•	•
Dose3	0.34	0.9	031 0	.33 0.8	46 0.733	0.999).	
Dose4	0.34	0.9	031 0	.33 0.8	56 0.733	0.999	9 1.000	•
•								

EPA MRID Number 48671309

Page 75 of 77

EPA MRID Number 48671309

Dose5	0.33	0.978	0.33	0.847	0.632	1.000	1.000	1.000
* * *				* * * * * * * * * * *				* * * * * * * * *
Krus	skal-Wal		- equality TestStat	lpha-level: among trea P-value 0.323	atment gı e		sts	
				signif. d ponse rela				ve trend
Level	Medi		MannWhi	t p-value		Jonckhe	eere p-va	alue
Ctrl	0.			•		,	•	
Dose1				0.123			0.971	
Dose2				1.000			0.470	
Dose3 Dose4	0. 0.			0.575 0.481).425).486	
Dose4 Dose5	0.			0.481).480	
CONTROL Willi		ND TEST SU	JMMARY	LOWEST CO	ONCENTRAI	FION SIG	NIF. LESS	5 THAN
	* * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	*******	* * * * * * * * *
***		VODO		1 1 0 01	1 I	1		
				-level=0.0		L tests		
	-			f F-sta		0-11 L L L L L		
nun	5	18		1.02).434		
	0	Ξ.		1.02		. 10 1		
Williams	s – test	assumes o	dose-respo	gnif. diffe nse relatio ble compar:	onship, t	testing 1	INCREASI	
Level	Mean		Isotonic				Tukey p-v	
Dose5		p-value	mean	p-value	Dosel	Dose2	Dose3	Dose4
Ctrl	-0.33		-0.33		•	•	•	
Dosel	-0.36	0.180	-0.34	0.237	•	•	•	
Dose2	-0.33	0.996	-0.34	0.254	0.528	•	•	•

Page 76 of 77

_						EPA I	/IRID Numb	er 48671309
Dose3	-0.34	0.931	-0.34	0.263	0.733	0.999	•	
Dose4	-0.34	0.931	-0.34	0.268	0.733	0.999	1.000	
Dose5	-0.33	0.978	-0.34	0.272	0.632	1.000	1.000	1.000
*** NON-PARA Krus	AMETRIC A	ANALYSES Lis test	5 - use a - equality TestStat 5.83	lpha-leve among tre P-valu	l=0.05 for eatment gr le	all tes		****
			n trt median nes dose-resp					SING
Ctrl Dose1 Dose2 Dose3 Dose4	•••	33 36 33 34 35	MannWhi	t p-value 0.123 1.000 0.575 0.481 0.671		(((eere p-va 0.029 0.530 0.575 0.514 0.581	alue
CONTROL Willi	SING TREN Lams cheere	ND TEST	SUMMARY	LOWEST (CONCENTRAT	TION SIGN	NIF. GREA	ATER THAN

Page 77 of 77

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1150, Androgen Receptor Binding (Rat Prostate Cytosol)

EPA Contract No. EP10H001452 Task Assignment No. 2-74-2012 (MRID 48671301)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	milelle for for
Michelle Sharpe-Kass, M.S.	Date:	6/13/2012
Secondary Reviewer:	Signature:	And licterberg
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	6/30/2012
Program Manager:	Signature:	Jack Q. Eng
Jack D. Early, M.S.	Date:	7/16/2012
Quality Assurance: Jack D. Early, M.S.	– Signature: _ Date:	Jack D. Eury 7/03/2012
Jack D. Early, MI.S.	Date:	1/03/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

<u>STUDY TYPE</u> : Androgen Receptor Binding (Rat Prost	ate Cytosol); OCSPP 890.1150
PC CODE: 417300	DP BARCODE: D401747
<u>TXR#</u> : 0053233	CAS No.: 1071-83-6
TEST MATERIAL (PURITY): Glyphosate (95.93% g	lyphosate acid, 85.14% calculated

TEST MATER glyphosate content)

SYNONYMS: Roundup, N-(phosphonomethyl)glycine

Willoughby, J.A. (2012) Glyphosate: Androgen Receptor Binding (Rat Prostate CITATION: Cytosol) Screening Assay. CeeTox, Inc., Kalamazoo, MI. Laboratory Study No.: 6500V-100334ARB, March 8, 2012. MRID 48671301. Unpublished

Joint Glyphosate Task Force, LLC, 8325 Old Deer Trail, Raleigh, NC **SPONSOR:**

TEST ORDER #: CON-417300-23

GLYPHOSATE / 417300

EXECUTIVE SUMMARY: In an androgen receptor (AR) binding assay (MRID 48617301), ventral prostate cytosol from Sprague Dawley rats was used as the source of AR to conduct saturation and competitive binding experiments. The saturation binding experiment was conducted to demonstrate that the AR in the rat prostate cytosol was present in reasonable numbers and was functioning with appropriate affinity for the radio-labeled reference androgen (R1881). The competitive binding assay measured the binding of a single concentration of $[^{3}H]$ -R1881 (1 nM) in the presence of increasing concentrations (logarithmic increase from 10⁻¹⁰ to 10⁻³ M) of glyphosate (95.93% glyphosate acid, 85.14% calculated glyphosate content, Batch # GLP-1103-21149-T). Low-salt TEGD buffer was used as the vehicle for glyphosate. A total of 3 runs were performed, and each run included dexamethasone as a weak positive control, and R1881 as the ligand reference standard.

Saturation binding data were not originally provided in the study report; however, summarized saturation binding data (MRID 48843501) from the performing laboratory were submitted following a request by the Agency. The dissociation constant (K_d) for [³H]-R1881 was 0.613±0.041 nM and the estimated B_{max} was 0.817±0.049 fmol/100 µg protein for the single batch of prostate cytosol that was prepared. The mean and individual K_d values were below the range reported in the EPA validation program (0.685 to 1.57 nM). Confidence in these numbers is high according to the goodness of fit ($R^2 = 0.957-0.984$) and the small variation among runs.

Primary Reviewer: Anwar Y. Dunbar, Ph.D. Signature: Risk Assessment Branch 1, Health Effects Division (7509P) Date: Secondary Reviewer: Gregory Akerman, Ph.D. Signature: Date:

DATA EVALUATION RECORD

Risk Assessment Branch 1, Health Effects Division (7509P)

Template version 08/2011

In the competitive binding experiment, the estimated mean log IC₅₀s for R1881 and the weak positive control (dexamethasone) were -9.0 and -4.6 M, respectively, and the mean relative binding affinity (RBA) for the weak positive control, dexamethasone, was 0.004%. Confidence in the numbers for the reference standards is high as the values as variation between runs was small. All performance criteria were met.

At glyphosate concentrations of 10^{-10} to 10^{-3} M, specific binding of [³H]-R1881 was 92.4-101.3% with the exception of one concentration (10^{-9} M) in Run 1, which had an average binding of 66.5%. Review of the data indicated that this value was a result of a single replicate with a specific binding of 7.5%. Excluding this value yielded a mean specific binding of 96.0%, which concurs with the other runs. As the specific [³H]-R1881 binding was >75% at all concentrations of glyphosate in all runs, an IC₅₀ and RBA could not be calculated for glyphosate.

Based on the results from the three runs, glyphosate is classified as a Non-Binder in the Androgen Receptor Binding Assay.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for an Androgen Receptor Binding Assay (OCSPP 890.1150).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

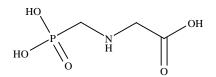
A. MATERIALS

1. <u>Test Facility</u>: Location: Study Director: Other Personnel:

Study Period:

2. <u>Test substance</u>:

Description: Source: Batch #: Purity: Solubility: Volatility: Stability: Storage conditions: CAS #: Molecular weight:


Structure:

CeeTox, Inc.

4717 Campus Drive, Kalamazoo, MI 49008 Willoughby, J.A. Rutherford, K. (Director of Laboratory Operations); Blakeman, D. (Senior Scientist); Haines, C. (Scientist); McColley, S. (Scientist); B. Meyer, Scientist; Toole, C. (Director of Project Management) September 22, 2001 to March 8, 2012

Glyphosate

White wetcake (white crystalline solid) Monsanto, Co, St. Louis, MO GLP-1103-21149-T (expiry: March 9, 2012) 95.93% glyphosate acid, 85.14% calculated glyphosate acid Not Reported Not reported One year at room temperature 35 to 100°F (Room temperature) 1071-83-6 169.01 g/mol

3. <u>Non-labeled ligand</u>

(strong positive control):

Supplier: Catalog #: Batch #: Purity: CAS #:

4. <u>Radioactive ligand</u>:

Supplier: Catalog and Batch #: Date of production: Date of use: Radiochemical purity: Specific activity: Concentration of stock:

5. <u>Weak positive control</u>:

Supplier: Catalog # Batch #: Purity: CAS # :

[³H]-R1881

R1881

R0908

98% 965-93-5

060M4638

Perkin-Elmer, Boston MA NET590, Lot # 653698 February 24, 2011 October 25, 27 and 31, 2010, >97% 85.1 Ci/mmol 10 n M

Sigma-Aldrich, St Louis, MO

Dexamethasone

Sigma-Aldrich, St Louis, MO D1756 1419230 98.9% 50-02-2

6. <u>Solvent/vehicle control</u>: Low salt TEGD buffer

Justification for choice of
solvent:Glyphosate is soluble (12 g/L) in aqueous solutions, but is not soluble in DMSOFinal Concentration:Not Applicable

B. <u>METHODS</u>

- 1. <u>Preparation of Rat Ventral Prostate Cytosol</u>: Male Sprague Dawley rats (number not reported) were castrated at 90 days of age and euthanized on the following day. Intact prostates were supplied by Charles River Laboratory, and were transported overnight on dry ice. The ventral prostates were weighed, and placed in ice-cold TEDG (Tris, EDTA, DTT, glycerol) buffer + PMSF (phenylmethylsulfonyl fluoride), homogenized, and centrifuged for 30 min at $30,000 \times g$ at 4°C. Supernatant was pooled, discarding the resulting pellets. Protein concentration of the cytosol was determined to be 8.8 mg/mL using a commercially available protein kit compatible with DTT in the TEDG buffer (e.g., BioRad Protein Assay Kit, Richmond, CA). Cytosol was divided into aliquots for storage at -80° C until use.
- 2. <u>Saturation Radioligand Binding Experiment</u>: A saturation binding experiment measuring total and non-specific binding of [³H]-R1881 was performed to demonstrate that the AR was present in reasonable concentrations and had the appropriate affinity for the R1881 ligand (report submitted separately).¹ The conditions for the saturation binding experiment are summarized in Table 1.

TABLE 1. Summary of Con	FABLE 1. Summary of Conditions for Saturation Binding Experiment					
Source of receptor		Rat ventral prostate cytosol				
Concentration of radioligand ((as serial dilutions)	0.25 to 10 nM				
Concentration of non-labeled l	igand (100X [radioligand])	2 to 1000 nM				
Optimization of receptor conce	entration	Sufficient to bind 25 to 35% of radioligand at 0.25 nM				
Temperature		4° C				
Incubation time		16 to 20 hours				
Composition of assay buffer	Tris	10 mM (pH 7.4)				
(TEDG)	EDTA	1.5 mM				
	Glycerol	10%				
	Phenylmethylsulfonyl fluoride	1 mM				
	DTT	1 mM				

a Data were obtained from page 2 of the study report (MRID 48843501).

On the day of the assay, the specific activity of the stock solution [3 H]-R1881 (originally 85.1 Ci/mmol as manufactured on February 24, 2011) was adjusted for decay over time (adjusted specific activities were not reported), and serial dilutions in low-salt TEDG + PMSF buffer were prepared to achieve the final concentrations in cytosol of 0.25, 0.50, 0.70, 1.0, 1.5, 2.5, 5.0, and 10 nM to determine total binding. To determine non-specific binding, solutions of non-labeled R1881 were prepared in a similar manner to achieve concentrations that were 100-fold greater than each respective radiolabeled concentration, resulting in final concentrations in cytosol of 25, 50, 70, 100, 150, 250, 500, and 1000 nM. In the absence of cytosol, the radiation found in 7.5, 15, 21, 30, or 45 µL of 10 nM [3 H]-

R1881 and 7.5, 15, or 30 µL of 100 nM [³H]-R1881 was measured. For each batch of cytosol, the optimal protein concentration was determined by calculating specific binding to differing amounts of protein per tube, using 0.25 nM radiolabeled R1881. The optimal protein concentration was determined to be 1.86 mg protein/assay tube, which resulted in the binding of approximately 25-35% of the total radioactivity added. Cytosolic protein used in this assay was thawed fresh for this experiment at 4°C, and maintained at 4°C during the binding assay. Each saturation binding experiment consisted of three non-current runs (conducted on September 24, 25, and 26, 2011, respectively). Each run contained three concurrent replicates at each concentration, resulting in the 72 samples depicted in Table 2.

TABLE 2. Saturation Binding Experiment Run ^{a,b}								
Total Binding	Non-Speci	fic Binding	Radioli	gand alone				
Tubes 1-24 ^c	Tubes	25-48 ^d	Tubes	49-72 °				
[³ H]-R1881	[³ H]-R1881	R1881	[³ H]-R1881	[³ H]-R1881				
Final conc. (nM)	Final conc. (nM)	Final conc. (nM)	Initial conc. (nM)	(µL)				
0.25	0.25	25	10	7.5				
0.50	0.50	50	10	15				
0.70	0.70	70	10	21				
1.0	1.0	100	10	30				
1.5	1.5	150	10	45				
2.5	2.5	250	100	7.5				
5.0	5.0	500	100	15				
10	10	1000	100	30				

a Data were obtained from page 3 of the study report (MRID 48843501).

b Each concentration was run in triplicate for a total of 72 samples.

c Tubes 1-24 contained 50 μL of triamcinolone acetonide and 7.5-45 μL [³H]-R1881. Samples were dried, and 300 μl of prostate cytosol were added.

d Tubes 25-48 contained 50 μL of triamcinolone acetonide and 7.5-45 μL [³H]-R1881. R1881 was added in a 100-fold molar excess of [³H]-R1881 in a volume of 7.5-45 μL. Samples were dried, and 300 μL of prostate cytosol were added.

e Tubes 49-72 contained only 7.5, 15, 21, 30, or 45 μL of 10 nM [³H]-R1881 or 7.5, 15, 21, or 30 μL of 100 nM [³H]-R1881 without cytosol or other components to determine the total counts added.

3. <u>**Competitive Binding Experiment:**</u> A summary of the assay conditions for the competitive binding experiment is included in Table 3.

TABLE 3. Summary of Con	FABLE 3. Summary of Conditions for Competitive Binding Experiment ^a						
Source of receptor		Rat ventral prostate cytosol					
Concentration of radioligand		1 nM					
Optimization of receptor conc	entration	~6.8 mg/mL					
Concentration of test substanc	e (as serial dilutions)	10^{-10} to 10^{-3} M					
Incubation Temperature		4 ± 2 °C					
Incubation time		16-20 hours					
Composition of assay buffer	Tris	10 mM (pH 7.4)					
	EDTA	1.5 mM					
	Glycerol	10 %					
	Protease inhibitor	0.5% v/v					
DTT		1 mM					
	Sodium Molybdate	1 mM					

a Data were obtained from page 17 of the study report.

The competitive binding experiment was performed according to the protocol provided in the EPA Test Guidelines OCSPP 890.1150. The competitive binding experiment measures the binding of a single concentration of [³H]-R1881 (adjusted specific activity of 82.0 Ci/mmol for the first run, 82.0 Ci/mmol for the second run and 81.9 mMol for the third run) to the AR in the presence of increasing concentrations of a test substance.

Low salt TEGD buffer was used as a vehicle, and no precipitation was observed by visual inspection at up to 10^{-3} M of glyphosate. Based on data form the competitive binding experiment, the reviewers calculated that the amount of cytosolic protein used in the assay contained enough receptor to bind approximately 9-11% of the [³H]-R1881 at 1 nM.

Dilutions of glyphosate, reference standard (R1881), weak positive control (dexamethasone), and solvent control (TEGD buffer) were prepared to achieve the concentrations shown in Table 4. Each assay consisted of three independent runs on three different days. Each run included triplicate sets of the blank and 1 μ M R1881 (non-specific binding, NSB) at the beginning and end of each run, along with triplicate tubes of the reference standard, the weak positive control, and the test chemical at each concentration, resulting in a total of 84 samples per run.

TABLE 4. Competitor	TABLE 4. Competitor Final Molar (M) Concentrations in Competitive Binding Assay ^{a b}								
Solvent Control	Reference standard	Weak positive control	Test Chemical	None					
TEGD buffer	R1881	Dexamethasone	Glyphosate	(hot mix)					
Tubes 7-12	Tubes 13-33 °	Tubes 37-60	Tubes 61-84	Tubes 1-6					
	1×10 ⁻⁶	1×10 ⁻³	1×10 ⁻³						
	1×10 ⁻⁷	1×10 ⁻⁴	1×10 ⁻⁴						
	1×10 ⁻⁸	1×10 ⁻⁵	1×10 ⁻⁵						
	1×10 ⁻⁹	1×10 ⁻⁶	1×10 ⁻⁶						
	1×10^{-10}	1×10 ⁻⁷	1×10 ⁻⁷						
	1×10 ⁻¹¹	1×10 ⁻⁸	1×10 ⁻⁸						
		1×10 ⁻¹⁰	1×10^{-10}						

a Data were obtained from pages 35-37 of the study report.

b The [3 H]-R1881, NSB, and solvent controls were run in 6 replicates and each concentration of each chemical was run in triplicate for a total of 84 tubes per run. Tubes 1-84 contained 50 µL of triamcinolone acetonide and 30 µL [3 H]-R1881. Samples were dried, and 300 µL of prostate cytosol were added. Tubes 7-84 also contained 10 µL of the solvent control, reference standard (non-radiolabeled R-1881), weak positive control, or test substance, with the exception of Tubes 13-18 that contained 30 µL of non-radiolabeled R1881 (used to evaluate non-specific binding). Tubes 1-6 contained only 30 µL of [3 H]-R1881.

c Tubes 13-18 were used to evaluate non-specific binding by adding 100X of cold (non-radiolabeled) R1881.

Sample tubes were stored 16-20 hours at 4° C to allow the reaction to reach equilibrium, and bound R1881 was separated from free R1881 by washing with HAP buffer and extraction with ethanol, followed by scintillation counting of bound [³H]-R1881.

4. Data Analysis: For the saturation binding experiment, total binding and non-specific binding data were modeled via non-linear regression by using Graph Pad Prism v. 5 (GraphPad Software, Inc., La Jolla, CA)], incorporating automatic outlier elimination according to the method of Motulsky and Brown (2006)² implemented by using the ROUT procedure in Prism v. 5 with a Q value of 1.0. Receptor binding data plots were corrected for ligand depletion with the method of Swillens (1995)³. For the competitive binding assay, similar methods of nonlinear regression were used to fit a curve (for R1881, the positive control, and the test substance) to the Hill equation formula which incorporated log IC₅₀ as a parameter to be estimated. For parameters reported from the saturation binding experiment (K_d and B_{max}) and competitive binding experiment (log IC₅₀ and RBA), mean and standard deviation were calculated for each run and mean and standard error were calculated for the composite three runs using Microsoft Excel 2007 (v. 12.0.6557.5000; Microsoft Corporation, Redmond, WA), and mean and standard error were calculated for the composite three runs with Microsoft Excel 2010.

5. Definitions

a. Classification of test material

If the data fit a 4-parameter nonlinear regression model, the test chemical is classified as:

2 Motulsky, H.J. and Brown, R.E. (2006) Detecting outliers when fitting data with nonlinear regression- a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, Vol 7, pp 123-142. 3 Swillens, S. (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis. *Molec. Pharmacol.* 47(6):1197-1203.

Binder: The average curve for the test chemical across runs crosses 50% of radioligand bound, and the Hill Slope is between -0.6 to -1.4.

Equivocal: The average lowest portion of curves across runs is between 50% and 75% radioligand binding (i.e. radioligand displacement is at least 25% but less than 50%), or the Hill slope for the curve falls outside the range for the weak positive control (-0.6 to -1.4).

Non-Binder: The average lowest portion of curves across runs is greater than 75% activity (*i.e.* less than 25% displacement of radioligand), or the data do not fit the model.

Untestable: If the test compound is not soluble above 1×10^{-6} M and the binding curve does not cross 50%, the chemical is judged to be untestable.

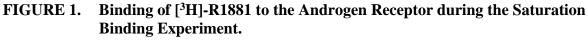
b. **Descriptors for receptor binding**

B_{max}: maximal binding capacity Kd: dissociation constants IC₅₀: Concentration of the test substance at which 50% of radioligand is displaced from the AR by the competitor **Relative Binding Affinity (RBA):** (IC₅₀ of R1881 \div IC₅₀ of test substance) \times 100 **Log RBA:** Log_{10} (IC₅₀ of R1881 \div IC₅₀ of test substance)

II. RESULTS

A. SATURATION BINDING EXPERIMENT: Saturation binding experiment parameters are presented in Table 6. The dissociation constant (K_d) for [³H]-R1881 was 0.613±0.041 nM and the estimated B_{max} was 0.817±0.049 fmol/100 µg protein for the single batch of prostate cytosol that was prepared. The mean and individual K_d values were below the range reported in the EPA validation program (0.685 to 1.57 nM). Confidence in these numbers is high according to the goodness of fit ($R^2 = 0.957-0.984$) and the small variation among runs.

TABLE 6. Saturation Binding Experiment of [³ H]-R1881 with Androgen Receptor from Rat Prostate Cytosol ^a						
Parameter	Run 1	Run 2	Run 3	Mean \pm SEM ^b		
R ² (unweighted)	0.984	0.977	0.957	0.957-0.984		
B _{max} (nM)	0.011	0.010	0.011	0.011±0.001		
B _{max} (fmol/100 μg protein)	0.809	0.773	0.870	0.817 ± 0.049		
K _d (nM)	0.565	0.638	0.635	0.613±0.041		


Data were obtained from page 4 of the study report (MRID 48843501). а

The range of R^2 is reported and the mean \pm SEM is reported for the other parameters.

 R^2 Goodness of fit for curve calculated for specific binding

Figure 1 illustrates the non-specific, specific, and total binding curves for [³H]-R1881 to the androgen receptor for the three independent runs. The specific binding reached a plateau in each run, and non-specific binding was less than 20% of total binding. Figure 2 contains the Scatchard plots that illustrate the binding of [³H]-R1881 to the androgen receptor. The

model fits to the data resulted in linear plots.

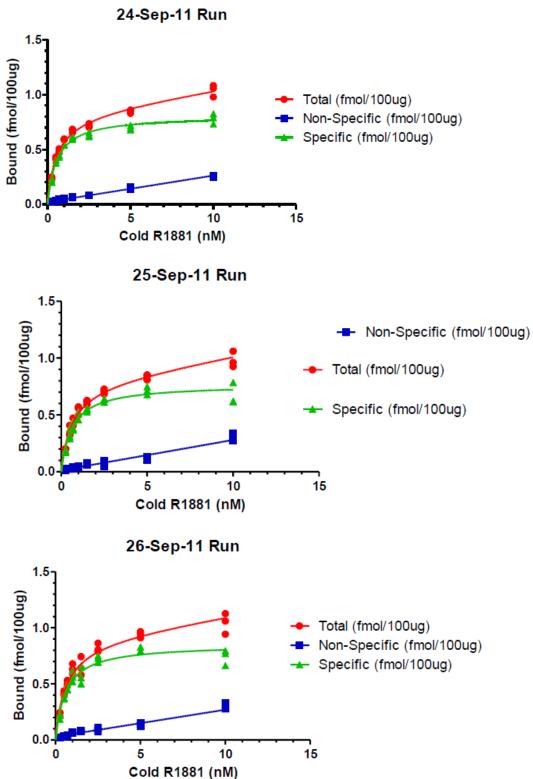
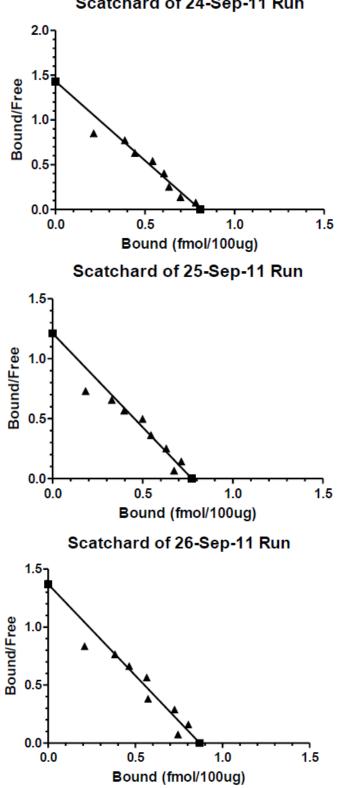



FIGURE 2. Scatchard Plots of the Binding of [³H]-R1881 to the Androgen Receptor.

Scatchard of 24-Sep-11 Run

B. <u>**COMPETITIVE BINDING EXPERIMENT</u>:** The results from the three competitive binding experiments are summarized in Table 6 and shown graphically in Figures 3-5. No precipitation was observed at glyphosate concentrations up to 10^{-3} M.</u>

In Run 1, specific binding of $[{}^{3}$ H]-R1881 was 95.5-101.3% at glyphosate concentrations of 10^{-10} to 10^{-3} M, with the exception of 10^{-9} M, which had an average binding of 66.5%. The raw data revealed that this value was a result of a single replicate with a specific binding of 7.5%. Exclusion of this value resulted in a mean specific binding of 96.0%. In this run glyphosate is classified as a "non-binder." In Run 2, specific binding of $[{}^{3}$ H]-R1881 was 93.8-99.9% at glyphosate concentrations of 10^{-10} to 10^{-3} M, classifying glyphosate as a "non-binder" for binding. In Run 3, specific binding of $[{}^{3}$ H]-R1881 was 92.4-99.0% at glyphosate concentrations of 10^{-10} to 10^{-3} M, classifying glyphosate as a "non-binder". An IC₅₀ and RBA could not be calculated for glyphosate.

The estimated mean log IC₅₀s for R1881 and the weak positive control (dexamethasone) were -9.0 and -4.6 M, respectively, and the mean RBA for dexamethasone was 0.004%. Confidence in the numbers for the reference standards is high as the values were similar between runs.

TABLE 6. Cor	TABLE 6. Competitive Binding Assay of Glyphosate with AR from Rat Prostate Cytosol						
Parameter		Run 1 ^b	Run 2 ^b	Run 3 ^b	Mean \pm SE ^c		
R ² (unweighted)) R1881	NR	NR	NR	NA		
	Positive control	NR	NR	NR	NA		
	Test substance	NR	NR	NR	NA		
$Log IC_{50} (M)$	^a R1881	-9.0	-9.1	-9.0	-9.03 ± 0.06		
	Positive control	-4.6	-4.6	-4.6	-4.6 ± 0.0		
	Glyphosate	NA	NA	NA	NA		
IC ₅₀ (M) ^c	R1881	$1.0 imes10^{-9}$	$7.94 imes10$ $^{-10}$	$1.0 imes10^{-9}$	$9.31 imes 10^{-10} (\pm 1.19)$		
	Dexamethasone	$2.51 imes10^{-5}$	$2.51 imes10^{-5}$	$2.51 imes10^{-5}$	$2.51 imes 10^{-5} (\pm 0.00)$		
	Glyphosate	NA	NA	NA	NA		
Log RBA ^c	Dexamethasone	-4.4	-4.5	-4.4	-4.43 (± 0.06)		
	Glyphosate	NA	NA	NA	NA		
RBA (%) ^c	Dexamethasone	0.00398	0.00316	0.00398	0.00371 ± 0.00047		
	Glyphosate	NA	NA	NA	NA		

a Data were obtained from pages 25, 27 and 29 of the study report.

b The mean and standard deviation are reported for the concurrent replicates within each run.

c Calculated by reviewers; for means expressed in scientific notation, the SE values in parentheses are presented in the same order of magnitude as the mean value.

SE Standard Error

NA Not applicable

NR not reported.

R² Goodness of fit (R² is more appropriately expressed as a range, as opposed to a mean).

RBA (%) relative binding affinity

FIGURE 3. Percentage [³H]-R1881 Bound to the Androgen Receptor in the Presence of R1881, Dexamethasone, or Glyphosate in Assay 1.

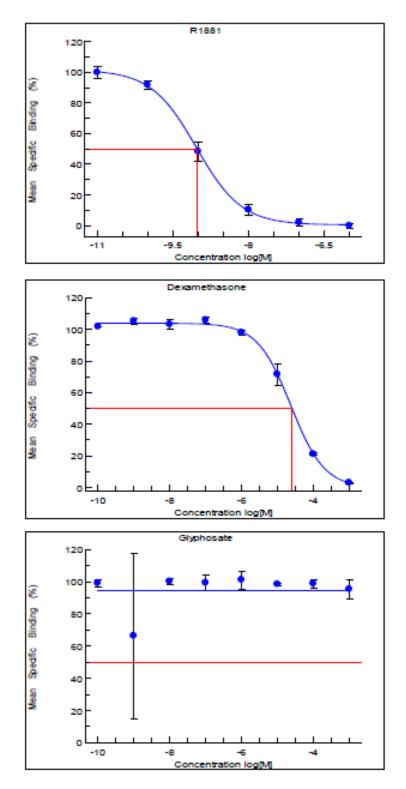


FIGURE 4. Percentage [³H]-R1881 Bound to the Androgen Receptor in the Presence of R1881, Dexamethasone, or Glyphosate in Assay 2.

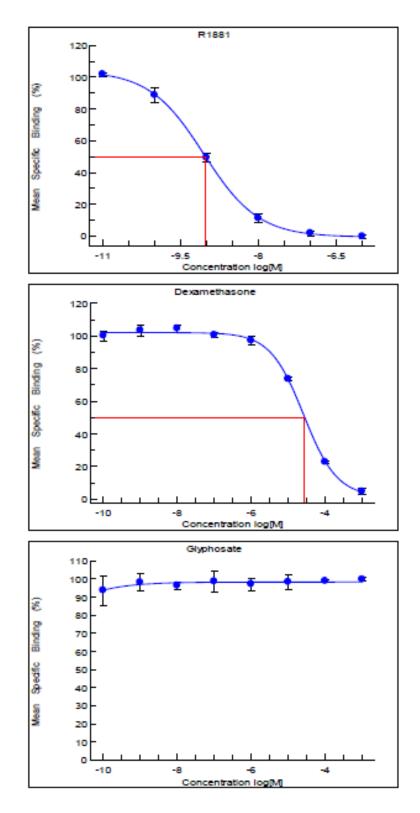
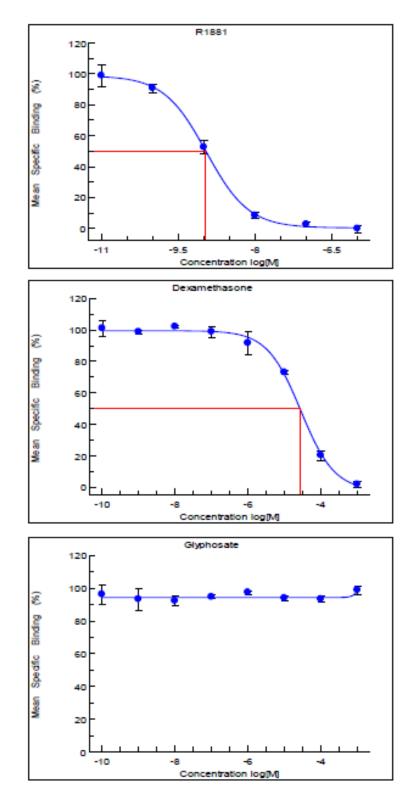



FIGURE 5. Percentage [³H]-R1881 Bound to the Androgen Receptor in the Presence of R1881, Dexamethasone, or Glyphosate in Assay 3.

C. <u>**PERFORMANCE CRITERIA</u>**: To ensure that the competitive binding assay was functioning properly, each run was evaluated using the criteria shown in Table 7.</u>

TABLE 7. Criterion ^a	Tolerance Limit(s) ^b	Value	Yes	No
Ligand depletion is minimal. The recommended ratio				
of total binding in the absence of competitor to total	≤15%	9.7 to 10.9%	Х	
amount of [³ H]-R1881 added per assay tube.				
Test chemical Top (% binding)	80 to 115	93.5 to 99.2°	Х	
R1881 fitted curve parameters				
Top (% binding)	82 to 114	99 to 104	Х	
Bottom (% binding)	-2.0 to 2.0	0	Х	
Hill Slope	-1.2 to -0.8	-0.8 to -1.0	Х	
Weak positive control (dexamethasone) fitted curve p	arameters			
Top (% binding)	87 to 106	100 to 104	Х	
Bottom (% binding)	-12 to 12	-2 to 2	Х	
Hill Slope	-1.4 to -0.6	-0.9 to -1.0	Х	
Saturation Binding Experiment K _d (nM)	0.685 to 1.57	0.565 to 0.638		Х
Non-specific binding (%) ^d	≤10.0	0.35 to 0.47	Х	

a Data were obtained from pages 25, 27 and 29 of the study report.

b These values represent ranges from the validation study.

c 10^{-10} to 10^{-9} M; excludes the 10^{-9} M value in Assay Run 1 that was 66.5% due to one replicate with a value of 7.5%

d Calculated by the reviewer from data on pages 35-37 of the study report.

The performance criteria were generally met. Additionally, the curve for the reference material showed that increasing concentrations of unlabeled R1881 displaced [³H]-R1881 in a manner consistent with one-site binding, as indicated by a Hill slope of -0.8 to -1.0. Examination of the data for the two reference standards across the runs indicated consistency of the Hill slope, and top and bottom plateaus, and the placement along the X-axis was consistent.

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATOR'S CONCLUSIONS</u>: Glyphosate was classified as a "non-binder" in all three independent runs and thus has a final classification of "non-binder."
- **B.** <u>AGENCY COMMENTS</u>: In the competitive binding experiment, no precipitation of glyphosate was observed at any tested concentration; therefore, the suitable top concentration of glyphosate was 10^{-3} M.

In the saturation binding experiments, the mean dissociation constant (K_d) for [³H]-R1881 was 0.613 nM and the mean estimated B_{max} was 0.817 fmol/100 µg protein for the single batch of prostate cytosol that was prepared. The mean and individual K_d values were below the range reported in the EPA validation program (0.685 to 1.57 nM). Confidence in these numbers is high according to the goodness of fit (R² = 0.957-0.984) and the small variation among runs.

In the competitive binding experiments, the estimated mean log IC₅₀s for R1881 and the weak positive control (dexamethasone) were -9.0 and -4.6 M, respectively, and the mean

RBA for the dexamethasone was 0.004%. Confidence in the numbers for the reference standards is high as the values were similar between runs. All performance criteria were met.

Specific binding of [³H]-R1881 was 95.5-101.3% at glyphosate concentrations of 10^{-10} to 10^{-3} M in Run 1, with the exception of the 10^{-9} M concentration, which had an average binding of 66.5%. Examination of the raw data indicated that this value was a result of a single replicate with a specific binding of 7.5%. Exclusion of this value results in a mean specific binding of 96.0%. In this run glyphosate is classified as a non-binder. In Runs 2 and 3, specific binding of [³H]-R1881 was \geq 92%% at glyphosate concentrations of 10^{-10} to 10^{-3} M, yielding classifications of non-binder for glyphosate.

- C. <u>STUDY DEFICIENCIES</u>: The following deficiencies were noted that are not considered to have had an adverse impact on the results, interpretation or conclusions of this study:
 - Curves were not provided showing the average binding of each test substance across all three runs.
 - R² values for the competitive binding assay were not reported.

DATA EVALUATION RECORD

GLYPHOSATE Study Type: OCSPP 890.1200, Aromatase Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-74-2012 (MRID 48671303)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer	Signature:	Joan Harlin
<u>Joan Harlin, M.S.</u>	Date:	7/5/2012
Secondary Reviewer	Signature:	A-M hickenberg
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	7/11/2012
Program Manager:	Signature:	Jack D. Eury
Jack D. Early, M.S.	Date:	7/13/2012
Quality Assurance:	Signature:	Jack D. Eury
Jack D. Early, M.S.	Date:	7/13/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

GLYPHOSATE / 417300	Aromatase (Huma) Assay (2011) / Page 1 of 12 SPP 890.1200 / OECD None
Primary Reviewer: Anwar Y. Dunbar, Ph.	D.	Signature:	Am y. Dah 05-27-15
Risk Assessment Branch 1, Health Effects	Division (7509P)	Date:	05-27-15
Secondary Reviewer: Greg Akerman, Ph.I.).	Signature:	pr pr
Risk Assessment Branch 1, Health Effects	Division (7509P)	Date:	Glislis
			Template version 08/2011

DATA EVALUATION RECORD

<u>STUDY TYPE</u>: Aromatase (Human Recombinant); OCSPP 890.1200

PC CODE: 417300

DP BARCODE: D401747

TXR#: 0053233

CAS No.: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (95.93% glyphosate acid (85.14% calculated glyphosate content in sample)

<u>SYNONYMS</u>: *N*-(phosphonomethyl)glycine

<u>CITATION</u>: Wilga, P.C. (2012). Glyphosate: Human Recombinant Aromatase Assay. CeeTox, Inc., Kalamazoo, MI. Laboratory Study No.: 6500V-100334AROM, March 9, 2012. MRID 48671303. Unpublished.

SPONSOR: Joint Glyphosate Task Force LLC, 8325 Old Deer Trail, Raleigh, NC

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In an *in vitro* aromatase (CYP 19) assay (MRID 48671303), glyphosate (95.93% glyphosate acid; 85.14% calculated glyphosate content in sample; Lot # GLP-1103-21149-T) was incubated with human recombinant aromatase and tritiated androstenedione ([1 β -³H(N)]-androst-4-ene-3,17-dione; [³H]ASDN) at log concentrations of 10⁻¹⁰ to 10⁻³ M for 15 minutes to assess the potential of glyphosate to inhibit aromatase activity. The solvent vehicle was 0.1 M phosphate buffer for glyphosate, ethanol for ASDN, and dimethyl sulfoxide (DMSO) for 4-OH ASDN, with a final assay volume of ≤1% DMSO.

Aromatase activity was determined by measuring the amount of tritiated water produced at the end of a 15-minute incubation for each concentration of chemical. Tritiated water was quantified using liquid scintillation counting (LSC). Four independent runs were conducted; however, the first run was not used because of incorrect standard preparation. The remaining three runs were conducted and each run included a full activity control, a background activity control, a positive control series $(10^{-10} \text{ to } 10^{-5} \text{ M})$ with a known inhibitor (4-hydroxyandrostenedione; 4-OH ASDN), and the test chemical series $(10^{-10} \text{ to } 10^{-3} \text{ M})$ with three repetitions per concentration.

Aromatase activity in the full activity controls was $0.676 \pm 0.072 \text{ nmol}\cdot\text{mg-protein}^{-1}\cdot\text{min}^{-1}$. The response of each full activity control within a run was between 90 to 110% of the average full activity. Activity in the background controls ranged 0.23 to 0.38% and averaged 0.30% of the

full activity control. The response of the full activity controls and background controls was acceptable for each run.

For the positive control substance (4-OH ASDN), aromatase activity results were within the recommended ranges for the performance criteria. The estimated log IC₅₀ for 4-OH ASDN averaged -7.29 M and the Hill slope was -0.96.

For glyphosate, aromatase activity averaged $0.673 \pm 0.066 \text{ nmol}\cdot\text{mg-protein}^{-1}\cdot\text{min}^{-1}$ at the lowest tested concentration of 10^{-10} M and 0.741 ± 0.100 nmol $\cdot\text{mg-protein}^{-1}\cdot\text{min}^{-1}$ at the highest tested concentration of 10^{-3} M. The average aromatase activity was $\geq 99.67\%$ of the control at all tested glyphosate concentrations for all runs.

Based on the data from the average response curve, glyphosate is classified as a Non-inhibitor of aromatase activity in this assay.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for an Aromatase assay (OCSPP 890.1200).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

A. <u>MATERIALS</u>

1. Test Substance:

Description: Source: Lot # (expiration date): Purity: Volatility: Storage conditions: Stability: Solvent: Solubility (in test solvent): Highest Concentration Tested: Stock Solution Preparation: Molecular weight: CAS #: Structure:

Glyphosate White crystalline solid Monsanto Company, St. Louis, MO GLP-1103-21149-T (March 9, 2012) 95.93% glyphosate acid (85.14% calculated glyphosate content in sample) Not reported Room temperature (e.g. ambient) Not reported 0.1 M sodium phosphate buffer 10⁻³ M 10⁻³ M Serial dilution 169.1 g/mol 1071-83-6

HO OH H

2. <u>Non-Labeled Substrate</u>: CAS # : Source: Batch # (expiration date): Purity:

3. <u>Radiolabeled Substrate</u>:

Source: Batch # (expiration date): Radiochemical Purity (Supplier): Specific activity: Radiochemical Purity (In-lab determination):

4. Positive Control:

CAS # Source: Batch # (expiration date): Purity:

5. Solvent (Vehicle Control):

Sources: Batch #s (expiration date): Justification for choice of solvents

Concentration (% of total volume in assays) Androstenedione (ASDN) 63-05-8 Steraloids, Inc., Newport, RI (Catalog # A6030-100) L1712 (April 2016) 99.8%

$1-\beta$ [³H(N)]-Androst-4-ene-3,17-dione; ([³H]ASDN)

Perkin Elmer, Boston, MA (Catalog #NET-926) 619344 (January 10, 2012) >97% 26.3 Ci/mmol Not determined

4-hydroxyandrostenedione (4-OH ASDN) 566-48-3 Sigma-Aldrich, St. Louis, MO (Catalog # F2552) 081K2133 (March 2015) 99.6%

Dimethyl sulfoxide (DMSO) for 4-OH ASDN; Ethanol for ASDN and [³H]ASDN; 0.1 M Sodium phosphate buffer for glyphosate

Not reported Not reported DMSO and ethanol are listed as vehicles acceptable for use in OCSPP 890.1200. Justification was provided for the use of DMSO as a solvent for 4-OH ASDN and for the use of 0.1 M sodium phosphate buffer as a solvent for glyphosate.

≤1% DMSO; concentration of ethanol was not reported

6. <u>Test Microsomes</u>:

Source: Lot # (expiration date): Protein concentration: Cytochrome C reductase activity: Aromatase activity:

Human recombinant aromatase (CYP19) microsomes

BD GentestTM, Woburn, MA (Catalog # 456260) 19701 (July 2014) 3.7 mg/mL 540 nmol /mg protein/min 5.7 pmol/pmol P450/min

B. <u>METHODS</u>

1. <u>Assay Components and Preparations</u>: A mixture of non-labeled and radiolabeled $[{}^{3}H]ASDN$ was prepared such that the final concentration of ASDN in the assay was approximately 0.1 μ M, and the amount of tritium added to each incubation tube was 0.1 μ Ci.

Glyphosate was formulated in the assay buffer (0.1 M sodium phosphate buffer, pH 7.4) based on its high water solubility, and relatively low organic solubility. The positive control, 4-OH ASDN, was formulated in DMSO such that the volume of DMSO used per assay was no more than 1% v/v of the total assay volume to minimize the potential for the solvent to inhibit the enzyme. DMSO was selected because it is listed as one of the solvents of choice detailed in the EPA guideline; it not as volatile as ethanol and so evaporation was less of a concern in the assay, and is more accurate to pipette because of its density and viscosity. ASDN and [³H]ASDN were formulated in ethanol and the assay buffer; no maximum assay concentration for ethanol was reported.

A stock solution of the positive control substance, 4-OH ASDN, was formulated in DMSO. Fresh dilutions of the stock solution were prepared in the same solvent as the stock solution on the day of use. Dilutions were prepared such that the target concentrations of the positive control substance (0.1-10,000 nM; Table 4) were achieved by the addition of 20 μ L of the dilution for a final assay volume of 2 mL.

Human recombinant microsomes were purchased from BD GentestTM, and stored at $-80 \pm 10^{\circ}$ C (storage interval not reported). Microsomes were thawed and portioned into individual vials based on the protein concentration of the batch (0.008 mg/mL microsomal protein per tube) and returned to the freezer for storage (storage interval not reported) to minimize freeze-thaw cycles to no more than one. The final concentration was approximately 0.004 mg/mL of microsomal protein/assay tube.

Other assay components sodium phosphate buffer, propylene glycol, and NADPH are reported in Table 1.

TABLE 1. Assay Components and Conditions ^a				
Assay Factor	Values			
0.1M sodium phosphate buffer (pH 7.4)				
Microsomal Protein	0.004 mg/mL ^b			
NADPH	0.3 mM			
[³ H]ASDN	100 nM			
Propylene Glycol	5%			
Temperature	$37 \pm 2^{\circ}C$			
Incubation Time	15 min			

a Data were obtained from p. 18 of the study report.

b The concentration of microsomal protein was optimized for microsomes that produce approximately 540 pmol product/(min x mg protein) and 5.7 pmol product/pmol P450/min.

2. <u>Suitability Assessments</u>: The protein concentration was determined from the package information provided by the vendor; protein concentration was not verified on each day the aromatase assay was run.

Aromatase activity in each lot of human recombinant microsomes was determined to demonstrate the presence of sufficient activity for analysis of glyphosate. The aromatase activity was determined to be 0.584-0.771 nmol·mg-protein⁻¹·min⁻¹, which was greater than the minimum recommended aromatase activity of 0.1 nmol·mg-protein⁻¹·min⁻¹.

3. <u>Aromatase Assay</u>: Each assay run contained 4 tubes for the full enzyme activity and background activity controls, respectively, and a full concentration curve in duplicate for the positive control, and in triplicate for the test substance were established.

The amount of ${}^{3}\text{H}_{2}\text{O}$ in the aqueous fraction was quantified for each assay tube by LSC, and aromatase activity was reported in units of nmol·mg-protein⁻¹·min⁻¹.

4. <u>Demonstration of Proficiency</u>: Proficiency testing of the CYP19 aromatase assay was conducted in three independent runs on April 8, 16, and 20, 2010.by the test facility. The raw data from these three runs included evaluation of the positive control, 4-OH ASDN and the four recommended proficiency chemicals (econazole, fenarimol, nitrofen, and atrazine).

Positive Control

- (1) <u>Initial Demonstration of Laboratory Proficiency</u>: Data from an initial demonstration of laboratory proficiency were not reported. The positive control data from the three acceptable assay runs generally met the following criteria:
 - Mean aromatase activity in the absence of an inhibitor was at least 0.1 nmol/mgprotein/min.
 - Mean background control activity was $\leq 15\%$ of the full activity control.
 - Coefficient of variation (CV) for replicates within each sample type and concentration of 4-OH ASDN was generally <15%.
 - Performance criteria (Table 2) were met, and served as guidance in identifying runs that provided parameters in the preferred ranges.

(2) Demonstration of Proficiency of New Technician for Conducting Assay (when

applicable): The demonstration of proficiency of a new technician was not indicated. The positive control data for slope, top and bottom percent from the three acceptable assay runs met the criteria as listed in section (i) of OCSPP 890.1200.

TABLE 2. Performance Criteria for the Positive Control ^a							
Parameter	Lower Limit Criteria	Upper Limit Criteria	Actual Lower Limit	Actual Upper Limit			
Slope	-1.2	-0.8	-1.00	-0.92			
Top (%)	90	110	98.36	100.62			
Bottom (%)	-5	+6	-0.06	0.76			
Log IC ₅₀ (M)	-7.3	-7.0	-7.30	-7.28			

a Data were obtained from pages 19 and 30 of the study report.

b. <u>Proficiency Chemicals</u>: Although the finalized data were not presented (including top and bottom of the curve, Hill slope, and log IC₅₀), the raw proficiency data that were provided (DEST.48671304) appear to support the expected designations of inhibitor or non-inhibitor for each of the proficiency chemicals, as well as the positive control.

TABLE 3. Proficiency Chemicals ^a					
Compound	CAS#	Class	Concentrations		
Econazole	24169-02-6	Inhibitor	10^{-3} to 10^{-10}		
Fenarimol	60168-88-9	Inhibitor	10^{-3} to 10^{-10}		
Nitrofen	1836-75-5	Inhibitor	10^{-3} to 10^{-10}		
Atrazine	1912-24-9	Non-inhibitor	10^{-3} to 10^{-10}		

a Raw data were included in Excel file 890.1200 Aromatase DEST.48671304

5. <u>Determination of Aromatase Activity with Test Chemical(s)</u>: The response of aromatase activity to the presence of eight concentrations of glyphosate per run, in triplicate, was tested during three independent runs (Table 4). Solubility was assessed (presence of cloudiness or a precipitate). If insolubility was observed at the highest test concentration for the first run, then the highest test concentration would be adjusted for the second and third runs at the highest test concentration that appeared soluble using log or half-log concentrations. The lowest concentration tested was 10⁻¹⁰ M. The full enzymatic activity was obtained at the two lowest concentrations of the test chemical to define the top of the concentration-response curve.

Sample Type	Repetitions (Tubes)	Description	Reference or Chemical (M)
Full Activity Control	4	All test components ^b plus solvent vehicle	N/A
Bkgd Activity Control	4	Same as above without NADPH	N/A
4-OH ASDN Conc 1	2	All test components plus 4-OH ASDN	1×10 ⁻⁵
4-OH ASDN Conc 2	2	All test components plus 4-OH ASDN	1×10 ⁻⁶
4-OH ASDN Conc 3	2	All test components plus 4-OH ASDN	1×10 ^{-6.5}
4-OH ASDN Conc 4	2	All test components plus 4-OH ASDN	1×10 ⁻⁷
4-OH ASDN Conc 5	2	All test components plus 4-OH ASDN	1×10 ^{-7.5}
4-OH ASDN Conc 6	2	All test components plus 4-OH ASDN	1×10 ⁻⁸
4-OH ASDN Conc 7	2	All test components plus 4-OH ASDN	1×10 ⁻⁹
4-OH ASDN Conc 8	2	All test components plus 4-OH ASDN	1×10^{-10}
Glyphosate Conc 1 ^c	3	All test components plus Glyphosate	1×10 ⁻³
Glyphosate Conc 2 ^c	3	All test components plus Glyphosate	1×10^{-4}
Glyphosate Conc 3 ^c	3	All test components plus Glyphosate	1×10 ⁻⁵
Glyphosate Conc 4 ^c	3	All test components plus Glyphosate	1×10 ⁻⁶
Glyphosate Conc 5 ^c	3	All test components plus Glyphosate	1×10 ⁻⁷
Glyphosate Conc 6 ^c	3	All test components plus Glyphosate	1×10 ⁻⁸
Glyphosate Conc 7 ^c	3	All test components plus Glyphosate	1×10 ⁻⁹
Glyphosate Conc 8 ^c	3	All test components plus Glyphosate	1×10^{-10}

a Data were obtained from page 20 of the study report.

b The complete assay contained buffer, propylene glycol, microsomal protein, [³H]ASDN, and NADPH.

c Test chemical.

C. DATA ANALYSIS

1. <u>**Raw Data:**</u> Raw data were converted to aromatase activity (nmol·mg-protein⁻¹·min⁻¹) and percent control for the positive control and test chemical. The following raw data and calculated endpoints for each run were included in the report (Table 5).

Raw/Calculated Data	Included (X)
DPM/mL for each portion of extracted aqueous incubation mixture	Х
Average DPM/mL for each aqueous portion (after extraction)	Х
Total DPM for each aqueous portion (after extraction)	Х
The total DPM present in the assay tube at initiation	Х
The percentage of substrate converted to product	Х
Total DPM after extraction corrected for background	Х
Aromatase activity expressed in nmol/mg protein/min	Х
Average aromatase activity in the full activity control tubes	Х
Percentage of control activity remaining in the presence of various inhibitor concentrations	X

DPM Disintegrations per minute

2. <u>Statistical Methods</u>: For data generated at CeeTox, basic statistical analysis was performed on the data, which included means of replicates, standard deviation of the mean, standard error of the mean, and coefficient of variation.

The response curve was fitted by weighted nonlinear regression analysis using a 4-parameter regression model (XLfit; IDBS; Version 5.2.0.0, Fit Model 208). For each run,

the individual percent of control values were plotted versus logarithm of the test chemical concentration. The fitted concentration response curve was superimposed on the plot, with individual plots prepared for each run. The average percent of control values versus logarithm of test chemical concentration for the individual runs for each test chemical (with different symbols for each run) were included on the same graph with their respective fitted response curves. In addition, the average percent of control values for each run versus the logarithm of test chemical concentration were plotted on a separate graph along with the average concentration response curve across runs were superimposed on the same plot.

3. <u>Interpretation of Results</u>: Interpretation of the assay results was based on the average of three runs, using the categories presented in Table 6.

TABLE 6. Interpretation of Results ^a					
	Interpretation				
Data fit 4-parameter nonlinear	Average curve across runs crossed 50% ^a	Inhibitor			
regression model	Average lowest portion of curves across runs is between 50% and 75% activity ^b	Equivocal			
	Average lowest portion of curves across runs is greater than 75% activity ^b	Non-inhibitor			
Data do not fit model					

a Data obtained from Table 9, p. 23 of the study report.

b Ordinarily, an inhibition curve will fall from 90% to 10% over 2 log units with a slope near -1. Unusually steep curves may indicate protein denaturing or solubility issues. If the slope of the curve is steeper than -2.0, the result is classified as equivocal.

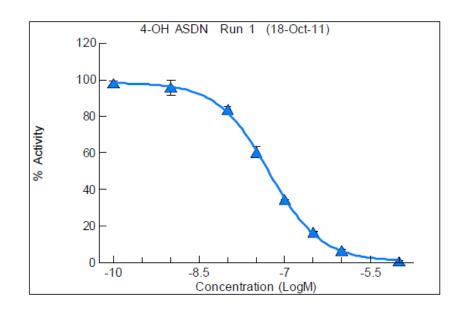
c If the test compound was not soluble above 10^{-6} M and the inhibition curve does not cross 50%, the chemical is typically determined to be untestable in the aromatase assay.

II. RESULTS

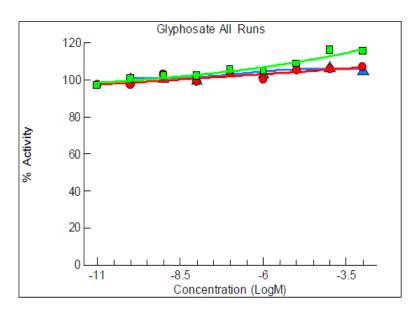
- A. <u>CONTROL ACTIVITY</u>: Aromatase activity in the full activity controls ranged from $0.584-0.771 \text{ nmol} \cdot \text{mg}$ -protein⁻¹·min⁻¹ for the 3 test runs, with a mean and standard deviation of $0.676 \pm 0.072 \text{ nmol} \cdot \text{mg}$ -protein⁻¹·min⁻¹. Activity in the background controls ranged 0.23 to 0.38% and averaged 0.30% of the full control activity. The response of the full activity controls and background controls were acceptable for each run.
- **B.** <u>**POSITIVE CONTROL:**</u> For the positive control substance (4-OH ASDN), aromatase activity averaged 0.668 ± 0.069 nmol·mg-protein⁻¹·min⁻¹ at the lowest tested concentration 10^{-10} M and 0.005 ± 0.001 nmol·mg-protein⁻¹·min⁻¹ at the highest tested concentration 10^{-5} M. The mean aromatase activity of the positive control (expressed as % full control activity) for each concentration tested across all 3 runs is presented in Table 7, along with the overall standard deviation, SEM, and %CV. An example of the inhibition response curve for the positive control from one run is shown in Figure 1.

TABLE 7. Effect o	<u>f Glyphosate on</u>	Aromatase	Activity (as per	cent of control) from Independ	dent Runs ^a
Chemical	Concen. (Log M)	# Runs	Overall Mean ^b	Overall SD ^b	Overall SEM ^b	Overall % CV ^b
4-OH ASDN	-5	3	0.67	0.04	0.02	5.4
(positive control)	-6	3	5.95	0.45	0.26	7.5
	-6.5	3	15.73	1.07	0.62	6.8
	-7	3	34.02	0.48	0.27	1.4
	-7.5	3	61.47	1.17	0.68	1.9
	-8	3	82.56	1.01	0.58	1.2
	-9	3	98.14	2.63	1.52	2.7
	-10	3	98.77	1.54	0.89	1.6
	-3	3	109.30	5.53	3.19	5.1
Glyphosate	-4	3	109.73	7.16	4.14	6.5
	-5	3	106.72	1.67	0.96	1.6
	-6	3	102.75	2.45	1.41	2.4
	-7	3	104.48	1.05	0.61	1.0
	-8	3	100.67	1.50	0.87	1.5
	-9	3	102.22	0.59	0.34	0.6
	-10	3	99.67	1.86	1.07	1.9

a Data were obtained from Appendix 1, pp. 42-55 of the study report


b Calculated by the reviewers from data presented in this table.

SD Standard Deviation


SEM Standard error of the mean

CV Coefficient of Variance

FIGURE 1. Inhibition Response Curve for 4-OH ASDN From Run 1.

C. <u>TEST SUBSTANCE</u>: For glyphosate, aromatase activity averaged 0.673 ± 0.066 nmol·mg-protein⁻¹·min⁻¹ at the lowest tested concentration, 10^{-10} M and 0.741 ± 0.100 nmol·mg-protein⁻¹·min⁻¹ at the highest tested concentration, 10^{-3} M. The mean aromatase activity of glyphosate (expressed as % full control activity) for each concentration tested across all 3 runs is presented in Table 7 (presented above), along with the overall standard deviation, SEM, and % CV. Inhibition response curves for glyphosate from each run are shown in Figure 2, and the average inhibition response curve across all runs is shown in Figure 3.

FIGURE 2. Inhibition Response Curves for Glyphosate From Each Test Run.

FIGURE 3. Mean Inhibition Response Curves for Glyphosate.

The effect of glyphosate on inhibition of aromatase activity is presented in Table 8. Log IC_{50} and Hill slope estimates were not determined for glyphosate because it never achieved >25% inhibition and could not be fitted by the nonlinear regression model. For 4-OH ASDN, the estimated log IC_{50} averaged -7.29 M and the Hill slope was -0.96 (Table 8). Confidence in these numbers is high due to the relatively small variation.

TABLE 8. Effect of Glyphosate on Aromatase Activity (as Percent of Control) From Independent Runs ^a							
Chemical	Run 1	Run 2	Run 3	Mean ^b	SEM ^b	%CV ^b	
	Log IC ₅₀ (M)						
Glyphosate	NA	NA	NA	NA	NA	NA	
4-OH ASDN	-7.28	-7.30	-7.29	-7.29	0.01	0.14	
			Hill slope				
Glyphosate	NA	NA	NA	NA	NA	NA	
4-OH ASDN	-0.96	-0.92	-1.00	-0.96	0.04	4.17	

a Data were obtained from Table 13, page 30 of the study report

b Calculated by the reviewers from data presented in this table.

SD Standard Deviation

CV Coefficient of Variance

NA Not applicable

Based on the data from the average response curve and the criteria listed above in Table 8, the results support the conclusion that glyphosate is a non-inhibitor in the aromatase assay.

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATORS CONCLUSIONS</u>: Glyphosate at the highest soluble concentration of 10–3 M did not inhibit aromatase activity, and had a mean relative activity of 109% (n=3 runs) of vehicle control activity. Therefore, glyphosate was classified as a non-inhibitor of aromatase, as defined by EDSP guideline OCSPP 890.1200.
- **B.** <u>AGENCY COMMENTS</u>: Results of proficiency testing for the aromatase assay were provided as raw data. Although the final calculation of parameters (including top and bottom of the curve, Hill slope, and log IC_{50}) were not provided, the raw proficiency data that were provided appear to support the expected designations of inhibitor or non-inhibitor for each of the proficiency chemicals, as well as the positive control.

Aromatase activity in the full activity controls was 0.676 ± 0.072 nmol·mgprotein⁻¹·min⁻¹, and activity in the background controls ranged 0.23 to 0.38% and averaged 0.30% of the full control activity. The response of the full activity controls and background controls were acceptable for each run.

For the positive control substance (4-OH ASDN), aromatase results were within the recommended ranges for the top of the curve, bottom curve, Hill slope, log IC₅₀, and %CV for replicates of each concentration within runs. The estimated log IC₅₀ for 4-OH ASDN averaged -7.29 M and the Hill slope was -0.96.

For glyphosate, average aromatase activity was \geq 99.67% at the lowest and highest tested concentrations tested, 10^{-10} and 10^{-3} M, in each run. Since the lowest portion of the response curve across runs was greater than 75% activity at all concentrations, glyphosate is classified as a non-inhibitor of aromatase activity in this assay.

C. <u>STUDY DEFICIENCIES</u>: The following deficiencies were noted that are not considered to have had an adverse impact on the results, interpretation or conclusions of this study:

- The stability of glyphosate was not reported.
- For 4-OH ASDN, the CVs were >15% in separate instances for Runs 1 and 2 (15.9% for 10^{-6} M and 25.5% for 10^{-5} M).

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1250, Estrogen Receptor Binding Assay

EPA Contract No. EP10H001452 Task Assignment No. 3-06-2012

(Revisions to MRID 48671305 to include Saturation binding data; Main study was originally reviewed under TA 2-74-2012)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	milelle fille for
Michelle Sharpe-Kass, M.S.	Date:	6/15/2012
Secondary Reviewer:	Signature:	And lecterberg
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	7/20/2012
Program Manager:	Signature:	Jack D. Eury
Jack D. Early, M.S.	Date:	7/30/2012
Quality Assurance:	Signature:	Jack D. Eury
Jack D. Early, M.S.	Date:	7/30/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

GLYPHOSATE / 417300	Estrogen Receptor Bindin		Cytosol) (2012) / Page 1 of 17 CSPP 890.1250/ OECD None
Primary Reviewer: <u>Anwar Y. Dunbar, P</u> Risk Assessment Branch 1, Health Effe Secondary Reviewer: <u>Gregory Akerman</u> Risk Assessment Branch 1, Health Effe	ects Division (7509P n, Ph.D.) Date: Signature: _	Am 4. Dak 05-27-15 Dro 6 113-115 Template version 08/2011

DATA EVALUATION RECORD

STUDY TYPE: Estrogen Receptor Binding Assay Using Rat Uterine Cytosol (ER-RUC); OCSPP 890.1250

PC CODE: 417300

DP BARCODE: D401747

TXR#: 0053233

CAS No.: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (95.93% glyphosate acid, 85.14% calculated glyphosate content)

SYNONYMS: Roundup, N-(phosphonomethyl)glycine

CITATION: Willoughby, J.A. (2012). Glyphosate: Estrogen Receptor Binding (Rat Uterine Cytosol). CeeTox, Inc., Kalamazoo, MI. Laboratory Study No.: 6500V-100364ERB, March 8, 2012. MRID 48671305. Unpublished.

Willoughby, J.A. (2012). Supplemental Information - Laboratory Proficiency Data for ERTA assays and Saturation Binding Data for AR and ER Binding Assays for Assorted Chemicals. CeeTox, Inc., Kalamazoo, MI. July, 2011. MRID 48843501. Unpublished.

SPONSOR: Joint Glyphosate Task Force, LLC, 8325 Old Deer Trail, Raleigh, NC

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In an estrogen receptor (ER) binding assay (MRID 48671305) for glyphosate (95.93% glyphosate acid, 85.14% calculated glyphosate content, Batch # GLP-1103-21149-T), uterine cytosol from Sprague Dawley rats was used as the source of ER to conduct saturation and competitive binding experiments. A saturation binding experiment was conducted to demonstrate that the ER in the rat uterine cytosol was present in reasonable numbers and was functioning with appropriate affinity for the radio-labeled reference estrogen prior to conducting ER competitive binding experiments. The competitive binding experiment measured the binding of a single concentration of $[^{3}H]$ -17 β -estradiol (1 nM) in the presence of increasing concentrations (10⁻¹⁰ to 10⁻³ M) of glyphosate. TEGD buffer was used as the solvent vehicle for glyphosate. A total of 3 runs were performed, and each run included 19-norethindrone as a weak positive control, octyltriethoxysilane as a negative control, and 17- β -estradiol as the natural ligand reference material.

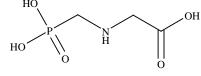
Saturation binding data were not originally provided in the study report; however, summarized saturation binding data (MRID 48843501) from the performing laboratory were submitted

following a request by the Agency. The protein concentrations used in the saturation binding runs varied between each run, and were approximately 3- to 6-fold greater than recommended (160 to 320 μ g versus 50±10 μ g). The K_d for [³H]-17 β -estradiol was 0.331 ± 0.061 nM and the estimated Bmax was 74.55 ± 3.03 fmol/100 μ g protein for the prepared rat uterine cytosol. The K_d for each run was within the expected Guideline range of 0.03 to 1.5 nM.

In the competitive binding experiment, the estimated mean log IC₅₀s for 17β -estradiol and 19norethindrone were -9.0 and -5.5 M, respectively. The mean relative binding affinity (RBA) was 0.032% for 19-norethindrone, compared to the natural ligand.

Glyphosate was tested over a concentration range $(10^{-10} \text{ to } 10^{-3} \text{ M})$ that fully defined the top of the curve. The percent binding at the top plateau (101.2-116.9%) was within 25 percentage points of the lowest concentration of the estradiol standard (98.6-101.8%). Across all runs, the lowest average percent radiolabeled estradiol binding in the presence of glyphosate was >81% (*i.e.* showed less than 25% displacement) at concentrations up to 10^{-3} M indicating that gylphosate was not competing with the natural ligand for binding to the ER.

Based on the results from the three runs, glyphosate is classified as Not Interactive in the Estrogen Receptor Binding Assay.


The assay **satisfies** the EDSP Tier 1 Test Order requirements for an Estrogen Receptor Binding Assay (OCSPP 890.1250).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1. **Test Facility:** CeeTox, Inc. Location: 4717 Campus Drive, Kalamazoo, MI 49008 **Study Director:** Willoughby, J.A. **Other Personnel:** Rutherford, K. (Director of Laboratory Operations); Blakeman, D. (Senior Scientist); Haines, C. (Scientist); McColley, S. (Scientist); Toole, B. Meyer, Scientist; C. (Director of Project Management) September 28, 2001 to March 8, 2012 **Study Period:** 2. **Test substance:** Glyphosate **Description:** White wetcake (white crystalline solid) Source: Monsanto, Co, St. Louis, MO Batch #: GLP-1103-21149-T (expiry: March 9, 2012) **Purity:** 95.93% glyphosate acid, 85.14% calculated glyphosate acid Solubility: Not reported Volatility: Not reported Stability: One year at room temperature **Storage conditions:** 35 to 100°F (Room temperature) CAS #: 1071-83-6 Molecular weight: 169.01 g/mol Structure: но

3. <u>Non-labeled ligand</u> (strong positive control):

Supplier: Catalog #: Batch #: Purity: CAS #:

17β-estradiol

Sigma-Aldrich, St Louis, MO E8875 110M0138V 100 % 50-28-2

4.	Radioactive	ligand:

Supplier: Catalog #: Batch#: Radiochemical purity: Specific activity: Concentration of stock:

Weak positive control:

19-norethindrone

 $[^{3}H]$ -17 β -estradiol

NET517

650702

50 nM

130.2 Ci/mmol

97%

Perkin-Elmer, Boston, MA

Supplier: Catalog #: Batch #: Purity: CAS #:

5.

Sigma-Aldrich, St Louis, MO N4128 030M1359V 99% 68-22-4

6.	Negative control:	Octyltriethoxysilane		
	Supplier:	Sigma-Aldrich, St Louis, MO		
	Catalog #:	440213		
	Batch #:	24996KK		
	Purity:	99.34		
	CAS #:	2943-75-1		

7. <u>Solvent/vehicle control</u>: Justification for choice of solvent: TEGD+PMSF Glyphosate is soluble (12 g/L) in aqueous solutions, but is not soluble in DMSO

B. <u>METHODS</u>

- 1. <u>Preparation of Rat Uterine Cytosol (RUC)</u>: Frozen Sprague Dawley rat uteri were purchased from Harlan Laboratories (Batch #: 210007463). Female Sprague Dawley rats were ovariectomized 7 days prior to being euthanized. Animals were 12-13 weeks old at the time of euthanasia. The uteri were weighed, placed in ice-cold TEDG buffer (Tris, EDTA, DTT, glycerol) + PMSF and used immediately. Uteri were homogenized in buffer and then centrifuged for 10 min at $2500 \times g$ at 4° C. The resulting supernatant was transferred and centrifuged for 60 minutes at $105,000 \times g$, discarding the resulting pellets. Protein concentration of the cytosol was determined to be 1.10 mg/mL using a protein kit compatible with DTT in the TEDG buffer (BioRad Protein Assay Kit). Cytosol was divided into portions for immediate use or storage at -80° C.
- 2. <u>Saturation (Radioligand) Binding Experiment</u>: A saturation binding experiment measuring total and non-specific binding of $[^{3}H]$ -17 β -estradiol was performed to demonstrate that the ER was present in reasonable concentrations and had the appropriate affinity for the native ligand (MRID 48843501). The conditions for the saturation binding experiments are summarized in Table 1.

TABLE 1. Summary of Conditions for Saturation Binding Experiment ^a			
Source of receptor		Rat uterine cytosol	
Concentration of radioligand	(as serial dilutions)	0.03 to 3 nM	
Concentration of non-labeled	ligand (100X [radioligand])	3 to 300 nM	
Concentration of receptor		Sufficient to bind approximately 25 to 35% of radioligand at 0.03 nM	
Temperature		4°C	
Incubation time		16 to 20 hours	
Composition of assay buffer	Tris	10 mM (pH 7.4)	
	EDTA	1.5 mM	
	Glycerol	10%	
Phenylmethylsulfonyl fluoride		1 mM	
	DTT	1 mM	

a Data were obtained from page 1 of the study report (MRID 48843501).

On the day of the assay, the specific activity of the stock solution $[^{3}H]$ -17 β -estradiol (originally 130.2 Ci/mmol as manufactured on May 6, 2011) was adjusted for decay over time (adjusted specific activities were not reported), and serial dilutions in TEDG + PMSF buffer were prepared to achieve the final concentrations of 0.03, 0.06, 0.08, 0.1, 0.3, 0.6, 1,

and 3 nM. Solutions of non-labeled 17β -estradiol were prepared in a similar manner to achieve concentrations that were 100-fold greater than each respective radiolabeled concentration to result in final concentrations of 3, 6, 8, 10, 30, 60, 100, and 300 nM.

For each batch of cytosol, the optimal protein concentration was determined by testing serial amounts of protein per tube, using 0.03 nM radiolabeled estradiol, until a concentration was reached that bound approximately 25 to 35% of the total radioactivity added. The final protein concentrations were 320 µg, 192 µg and 160 µg per assay tube for the first, second and third saturation binding experiments, respectively (*Note: typically 50 ± 10 µg protein per tube*). Each assay consisted of three non-concurrent runs (conducted on August 5, 6, and 7, 2011, respectively). Each run included three replicates of each test substance at each concentration, resulting in the 72 samples depicted in Table 2.

TABLE 2. Saturation Binding Experiment Run ^a			
Total binding ^b	Non-specific binding ^c	Radioligand alone ^d	Assay Components
Tubes 1-24	Tubes 25-48	Tubes 49-72	
350 µL	300 µL		TEDG + PMSF buffer
50 µL	50 µL	50 µL	[³ H]-17β-estradiol (8 serial dilutions) ^e
	50 µL		Non-labeled 17β -estradiol (8 serial dilutions, $100x$ each respective labeled concentration) ^f
100 μL	100 µL		Uterine cytosol (diluted to appropriate concentration)
500 μL	500 μL	50 µL	Total volume in each assay tube

a Data were obtained from page 2 of the study report (MRID 48843501).

b Total binding = $[{}^{3}H]-17\beta$ -estradiol bound to ER

c Non-specific binding = $[{}^{3}H]$ -17 β -estradiol and 100-fold greater non-labeled bound to ER

d Total [${}^{3}H$]-17 β -estradiol alone for dpm determination at each concentration

e Final concentrations of $[{}^{3}H]-17\beta$ -estradiol = 0.03, 0.06, 0.08, 0.1, 0.3, 0.6, 1, and 3 nM.

f Final concentrations of non-labeled 17β -estradiol = 3, 6, 8, 10, 30, 60, 100, and 300 nM.

Tubes were incubated with gentle vortexing for 17.5-19 hours at approximately 4°C. To separate bound from free estradiol, hydroxyapatite (HAP) slurry was added to each tube and vortexed (3 times with 5-min intervals). Subsequently, the contents of each tube were washed three times as follows: 2-mL portions of TEDG + PMSF buffer were added, vortexed, centrifuged for 10 min at 1000 x g, and the supernatant decanted and discarded. After the final centrifugation, ethanol (1.5 mL) was added to the HAP pellet remaining in each tube to extract the [³H]-17\beta-estradiol, followed by vortexing, and centrifugation for 10 min at 1000 x g. Aliquots (1 mL) of supernatant were radioassayed by scintillation counting. The temperature was maintained at approximately 4°C throughout the assay prior to extraction with ethanol.

3. <u>**Competitive Binding Experiment:**</u> A summary of the experimental conditions for the competitive binding experiment is included in Table 3.

TABLE 3. Summary of Conditions for Competitive Binding Experiment ^a				
Source of receptor		Rat Uterine Cytosol		
Concentration of radioligand		1 nM		
Concentration of receptor		~0.35 mg/mL		
Concentration of test substance (as serial dilutions)		10 ⁻¹⁰ to 10 ⁻³ mM		
Temperature		4±2 °C		
Incubation time		16-20 hours		
Composition of assay buffer	Tris	10 mM (pH 7.4)		
	EDTA	1.5 mM		
Glycerol Phenylmethylsulfonyl fluoride		10% (v/v)		
		0.5% (v/v)		
	DTT	1 mM		

a Data were obtained from page 17 of the study report.

The limit of glyphosate solubility in TEGD buffer was determined by visual observation. On the day of the assay, the specific activity of the stock solution [3 H]-17 β -estradiol was adjusted for decay over time (126.6 Ci/mmol for the first run; 126.5 Ci/mmol for the second run; and 126.1 Ci/mmol for the third run), and diluted in TEDG buffer + PMSF to the final appropriate concentrations. Serial dilutions of glyphosate, the weak positive control (19-norethindrone), the negative control (octyltriethoxysilane), and the reference material (non-labeled 17 β -estradiol) were prepared to achieve the concentrations shown in Table 4. Each assay consisted of three runs, and each run contained three replicates at each concentration, six replicates measuring total activity (50 µL master mix) plus three measuring total binding (solvent control) resulting in a total of 306 samples (102 samples/assay run).

TABLE 4. Molar (M) con	TABLE 4. Molar (M) concentrations in Competitive Binding Assay Run ^{a b}				
	Positive control	Negative control	Reference Chemical		
Glyphosate	19-Norethindrone	Octyltriethoxysilane	Non-labeled 17β-estradiol		
Tubes 79-102 °	Tubes 31-54 °	Tubes 55-78 °	Tubes 1-9 and 10-30 $^{\circ}$		
10 ⁻¹⁰	10 ^{-8.5}	10 ⁻¹⁰	Solvent control/master mix ^d		
10 ⁻⁹	10 ^{-7.5}	10 ⁻⁹	10 ⁻¹¹		
10 ⁻⁸	10 ⁻⁷	10 ⁻⁸	10 ⁻¹⁰		
10 ⁻⁷	10 ^{-6.5}	10 ⁻⁷	10 ^{-9.5}		
10 ⁻⁶	10 ⁻⁶	10 ⁻⁶	10 ⁻⁹		
10 ⁻⁵	10 ^{-5.5}	10 ⁻⁵	10 ^{-8.5}		
10 ⁻⁴	10 ^{-4.5}	10 ⁻⁴	10 ⁻⁸		
10 ⁻³	10 ⁻⁴	10 ⁻³	10 ⁻⁷		

a Data were obtained from pages, 37-45 of the study report.

b Each tube contains: 10µL of either the test substance, positive control, negative control, solvent control, or non-labeled 17β-estradiol; 390 µL of TEDG + PMSF buffer with [³H]-17β-estradiol; and 100 µL of uterine cytosol (with ER), for a total of 500 µL.

c Tubes 1-6 contained the master mix ($[^{3}H]$ -17 β -estradiol); Tubes 7-9 contained the solvent (TEGD).

d Solvent is TEGD+PMSF buffer for glyphosate, DMSO for the reference chemicals

Tubes were incubated with gentle vortexing for 16-20 hours at 4 ± 2 °C. To separate bound from free estradiol, HAP slurry was added to each tube and the tubes were vortexed (3 times with 5-minute intervals). Subsequently, the contents of each tube were washed three times as follows: TEDG + PMSF buffer was added, vortexed, centrifuged for 10 min at $1000\times g$, and the supernatant decanted and discarded. Ethanol was added to the HAP pellet remaining in each tube to extract the [³H]-17 β -estradiol, allowed to sit at room temperature for 15-20 min with vortexing, and centrifugation for 10 min at $1000\times g$. Aliquots of the supernatants were radioassayed by scintillation counting. The temperature was maintained at 4 ± 2 °C throughout the assay prior to extraction with ethanol.

C. <u>DATA ANALYSIS</u>: For the saturation binding experiment, total binding and non-specific binding data were modeled via non-linear regression by using Graph Pad Prism v. 5 (GraphPad Software, Inc., La Jolla, CA)], incorporating automatic outlier elimination according to the method of Motulsky and Brown $(2006)^1$ implemented by using the ROUT procedure in Prism v. 5 with a Q value of 1.0. Receptor binding data plots were corrected for ligand depletion with the method of Swillens $(1995)^2$. For the competitive binding assay, similar methods of nonlinear regression were used to fit a curve (for 17β -estradiol, the positive control, and the test substance) to the Hill equation formula which incorporated log IC₅₀ as a parameter to be estimated. For parameters reported from the saturation binding experiment (K_d and B_{max}) and competitive binding experiment (log IC₅₀ and RBA), mean and standard deviation were calculated for each run, and mean and standard error were calculated for the composite three runs using Microsoft Excel 2007 (v. 12.0.6557.5000; Microsoft Corporation, Redmond, WA), and mean and standard error were calculated for the composite three runs with Microsoft Excel 2010.

1. Definitions

a. <u>Classification of test material</u>: Classification of the test material is based on the average of three runs. Each run was first individually classified as follows:

Interactive = lowest point on the fitted curve within the range of the data is less than 50% (i.e., >50% of the radiolabeled estradiol has been displaced from the ER).

Not interactive = there are usable data points at or above 10^{-6} M and either the lowest point on the fitted response curve within the range of the data is above 75% (i.e., <25% of the radiolabeled estradiol has been displaced from the ER) or a binding curve cannot be fitted and the lowest average percent binding among concentration groups in the data is above 75%.

Equivocal up to the limit of concentrations tested = there are no data points at or above a test chemical concentration of 10^{-6} M and either a binding curve can be fit but $\leq 50\%$ of the radiolabeled estradiol has been displaced from the ER or a

1 Motulsky, H.J. and Brown, R.E. (2006) Detecting outliers when fitting data with nonlinear regression: a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, Vol 7, pp 123-142. 2 Swillens, S. (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis. *Molec. Pharmacol.* 47(6):1197-1203.

binding curve cannot be fit and the lowest average percent binding among concentration groups in the data is >50%.

Equivocal = A run is classified as equivocal if it does not fall into any of the categories above.

The categorical classification of each run was assigned a numerical value as follows:

Run Classification	Numerical Value
Interactive	2
Equivocal	1
Not interactive	0
Equivocal up to the limit of concentrations tested	"missing"

The values for each run were then averaged across runs and the chemical classified using the following ranges:

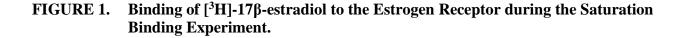
Test Material Classification	Numerical Range
Interactive	average ≥ 1.5
Equivocal	$0.5 \ge average < 1.5$
Not interactive	average <0.5
Equivocal up to the limit of concentrations tested	"missing"

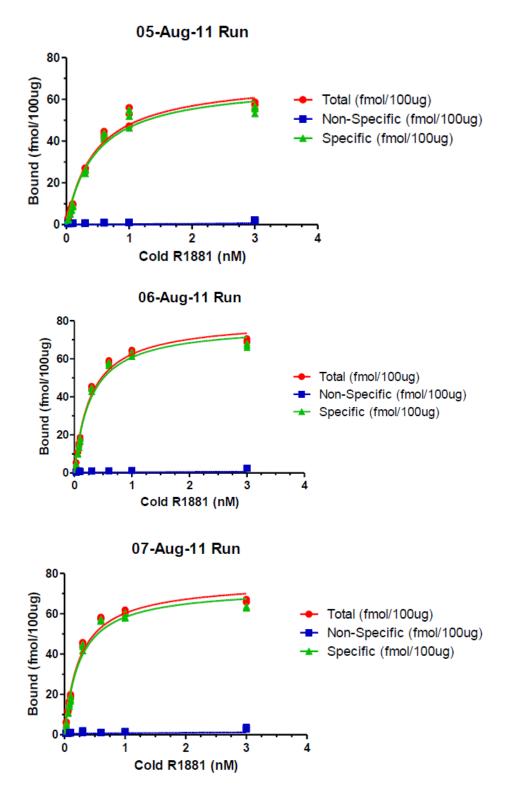
b. <u>Descriptors for receptor binding</u>:

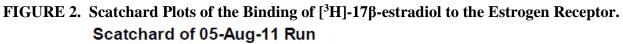
B_{max}: maximum specific binding number (fmol ER/100 μ g cytosol protein) measures the concentration of active receptor sites

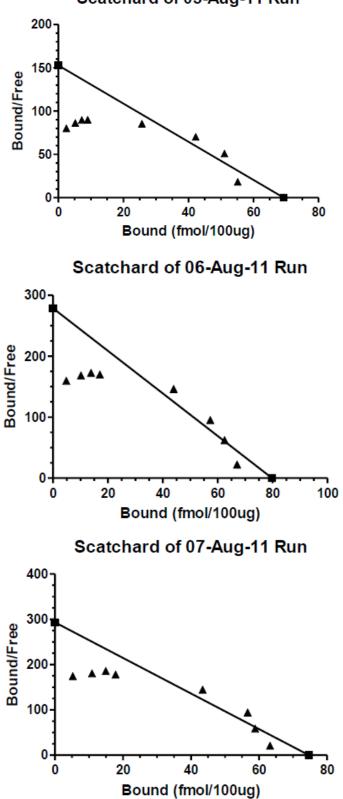
- Kd: dissociation constant (nM), measures the affinity of the receptor for its natural ligand
- IC₅₀: concentration of the test substance (M) at which 50% of the radioligand is displaced from the receptor

Relative Binding Affinity (RBA %): (IC₅₀ of 17 β -estradiol ÷ IC₅₀ of test substance) × 100 **Log RBA:** Log₁₀ (IC₅₀ of 17 β -estradiol ÷ IC₅₀ of test substance)


II. RESULTS


A. <u>SATURATION BINDING EXPERIMENT</u>: Figure 1 illustrates the non-specific, specific, and total binding curves for [³H]-17β-estradiol to the estrogen receptor for the three independent runs. The specific binding reached a plateau in each run, and non-specific binding was less than 20% of total binding. Figure 2 contains the Scatchard plots that illustrate the binding of [³H]-17β-estradiol to the estrogen receptor.


Saturation binding experiment parameters are presented in Table 5. The K_d for $[^3H]$ -17 β estradiol was 0.331 nM (± 0.061), and the estimated B_{max} was 74.55 fmol/100 µg protein (± 3.03) for the prepared rat uterine cytosol. The K_d for each run was within the expected range of 0.03 to 1.5 nM. Although the Scatchard plots fit straight lines to the data, the concavity observed in the data sets may indicate issues with ligand depletion. Confidence in these numbers is high due to the goodness of fit and the small variation among runs.


TABLE 5. Saturation Binding Experiment of [³ H]-17β-estradiol with Estrogen Receptor from Rat Uterine Cytosol ^a				
Parameter	Run 1	Run 2	Run 3	$Mean \pm SE^b$
R ² (unweighted)	0.976	0.982	0.980	0.976-0.982
B _{max} (nM)	0.148	0.102	0.080	0.110±0.035
B _{max} (fmol/100 μg protein)	69.25	79.76	74.65	74.55±3.03
K _d (nM)	0.453	0.286	0.255	0.331±0.061

a Data were obtained from page 3 of the study report (MRID 48843501). b The range of R^2 is reported and the mean \pm SEM is reported for the other parameters. R^2 Goodness of fit for curve calculated for specific binding

B. <u>COMPETITIVE BINDING EXPERIMENT</u>: The results from the three competitive binding experiments are summarized in Table 6 and presented graphically in Figures 3-5. The highest suitable concentration for analysis was 10^{-3} M in all runs. The mean specific binding in the presence of glyphosate was $\geq 82\%$ at concentrations $\leq 10^{-3}$ M in all three runs. The estimated mean log IC₅₀ and RBA were not calculated for glyphosate as the percent binding displacement did not reach 50% for any run.

The estimated mean log IC₅₀ for 17 β -estradiol and 19-norethindrone was -9.0 and -5.5 M, respectively. The mean RBA was 0.032% for 19-norethindrone, compared to the natural ligand. Confidence in these numbers is high due to the small variation. As the lowest average percent binding in the presence of glyphosate was >75% at concentrations up to 10^{-3} M in all three runs, glyphosate is classified as not interactive (0) in this assay (Table 7).

TABLE 6. Co	mpetitive Binding A	ssay of Glyphosat	te with Estrogen F	Receptor from Rat	t Uterine Cytosol ^a
Parameter		Run 1 ^b	Run 2 ^b	Run 3 ^b	Mean \pm SE ^c
R^2 (unweighted) 17 β -estradiol		NR	NR	NR	NA
	Positive control	NR	NR	NR	NA
	Test substance	NR	NR	NR	NA
Log IC ₅₀ (M)	17β-estradiol	-9.1	-9.0	-8.9	-9.0 ± 0.1
	Positive control	-5.5	-5.5	-5.5	-5.5 ± 0.0
	Test substance	NA	NA	NA	NA
IC ₅₀ (M)	17β-estradiol	$7.94 imes10^{-10}$	$1.00 imes 10^{-9}$	$1.26 imes 10^{-9}$	$1.02 \times 10^{-9} (\pm 0.23)$
	Positive control	3.16×10^{-6}	$3.16 imes10^{-6}$	$3.16 imes 10^{-6}$	$3.16 imes 10^{-6} \ (\pm 0.0)$
	Test substance	NA	NA	NA	NA
Log RBA	Positive control	-3.6	-3.5	-3.4	-3.5 ± 0.1
	Test substance	NA	NA	NA	NA
RBA (%)	Positive control	0.025	0.032	0.040	0.032 ± 0.007
	Test substance	NA	NA	NA	NA

a Data were obtained from text on page 23 of the study report.

b The mean and standard deviation are reported for the concurrent replicates within each run.

c The range is reported for r^2 , and the mean \pm SEM is reported for the remaining parameters.

R² Goodness of fit

RBA (%) Relative binding affinity

NA Not applicable.

	TABLE 7 Binding Classification of Glyphosate with Estrogen Receptor ^a						
1	2	3	Mean ^c	Binding Classification ^d			
0	0	0	0	Not Interactive			
	1 0	$\begin{array}{c ccc} 1 & 2 \\ 0 & 0 \\ \hline f the study suggests \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0			

a Data were obtained from page 23 of the study report.

b Classification category value: Interactive = 2; Equivocal = 1; Not interactive = 0; Equivocal up to the limit of concentrations tested ("missing", i.e., not included in calculation of mean).

c Mean of three runs expressed to the tenths place.

d Interactive = mean \geq 1.5; Equivocal = 0.5 \leq mean <1.5; Not interactive = mean <0.5

FIGURE 3. Percentage [³H]-E2 Bound to the Estrogen Receptor in the Presence of Glyphosate, Unlabeled E2, 19-Norethindrone or Octyltriethoxysilane in Assay Run 1.

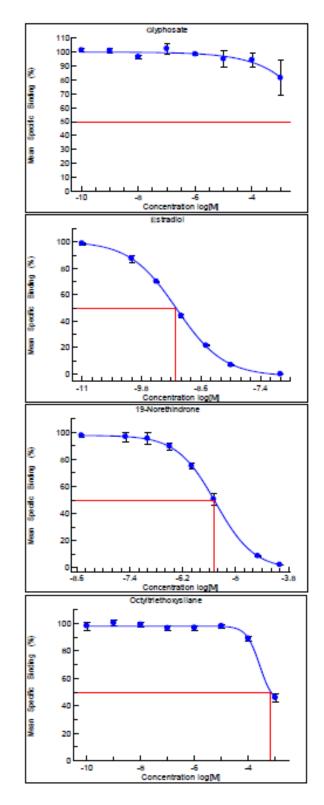


FIGURE 4. Percentage [³H]-E2 Bound to the Estrogen Receptor in the Presence of Glyphosate, Unlabeled E2, 19-Norethindrone or Octyltriethoxysilane in Assay Run 2.

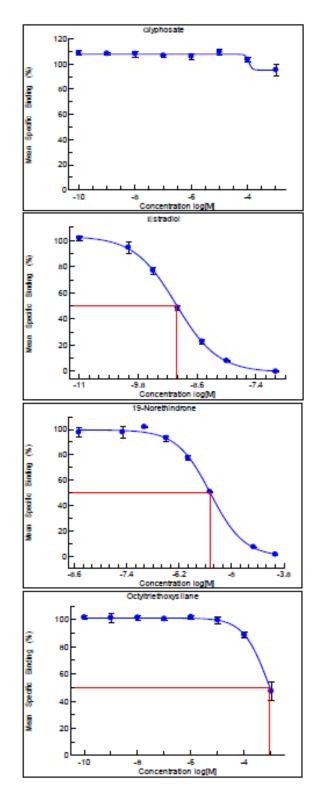
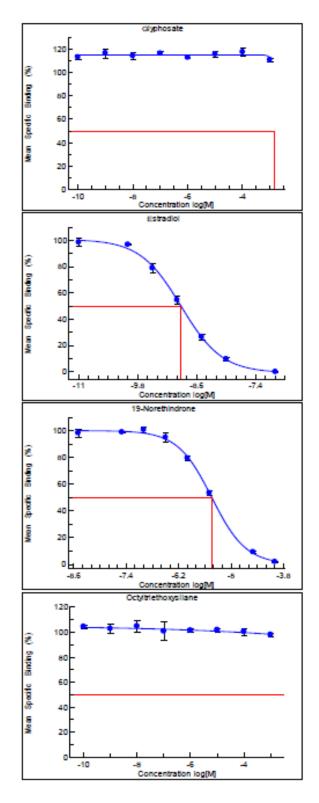



FIGURE 5. Percentage [³H]-E2 Bound to the Estrogen Receptor in the Presence of Glyphosate, Unlabeled E2, 19-Norethindrone or Octyltriethoxysilane in Assay Run 3.

C. <u>PERFORMANCE CRITERIA</u>: To ensure that the competitive binding assay functioned properly, each run was evaluated using the criteria shown in Table 8.

TABLE 8. Criterion ^a	Tolerance Limit(s)	Value	Yes	No
17β-estradiol fitted curve parameters				
Log _e residual SD	≤2.35	0.16 to 0.96	Х	
Top (% binding)	94 to 111	101 to 103	X	
Bottom (% binding)	-4 to 1	-1 to 0	X	
Hill Slope $(\log_{10}(M)^{-1})$	-1.1 to -0.7	-1 to -0.9	X	
Weak Positive control (19-norethindrone) fitted curve parameters ^b				
Log _e residual SD	NA	-0.83 to 1.01	NA	
Top (% binding)	NA	98 to 100	NA	
Bottom (% binding)	NA	-1 to 0	NA	
Hill Slope $(\log_{10}(M)^{-1})$	NA	-1.1 to -1	NA	
Solvent concentration				
DMSO ^c	≤10%	4%	X	
Negative control (octyltriethoxysilane) does not displace more than 25% of $[^{3}H]$ -17 β -estradiol from the ER on average across all concentrations	≤25%	≤54% ^d		Х

a Data were obtained from pages 27, 29 and 31 of the study report.

b The EPA Guideline does not define a set of tolerance limits for 19-norethindrone. Acceptance criteria were only defined for norethynodrel, which cannot be obtained commercially. The values reported were considered acceptable as they show 19-norethindrone to be an acceptable weak positive control.

c DMSO was only used for the reference chemicals.

d For Run 1 and Run 2, octyltriethoxysilane displaced 54% and 52.6% of $[^{3}H]$ -17 β -estradiol at 10⁻³ M. Run 3 was within the acceptable parameters.

NA Not applicable

The curve for the reference materials showed that increasing concentrations of unlabeled 17β -estradiol and 19-norethindrone displaced [³H]-17 β -estradiol in a manner consistent with one-site binding, as indicated by Hill slopes of -1.1 to -0.9 in the three runs.

Glyphosate was tested over a concentration range that fully defined the top of the curve $(10^{-10} \text{ to } 10^{-9} \text{ M})$. The percent binding at this top plateau (101.2-116.9%) was within 25 percentage points of the lowest concentration of the estradiol standard (98.6-101.8%).

III. DISCUSSION AND CONCLUSIONS

A. <u>INVESTIGATOR'S CONCLUSIONS</u>: Glyphosate was classified as "non-interacting" in all three independent runs and thus has a final classification of "non-interacting" for the estrogen receptor.

B. <u>AGENCY COMMENTS</u>: The protein concentrations used in the saturation binding runs varied between each run, and were approximately 3- to 6-fold greater than recommended. The K_d for $[^{3}H]$ -17 β -estradiol was 0.331 nM and the estimated B_{max} was 74.55 fmol/100 µg protein for the prepared rat uterine cytosol. The K_d for each run was within the expected Guideline range of 0.03 to 1.5 nM. Although the Scatchard plots fit straight lines to the data, the concavity observed in all of the data sets may indicate issues with ligand depletion.

In the competitive binding experiment, the estimated mean log IC₅₀ for 17 β -estradiol and 19-norethindrone was -9.0 and -5.5 M, respectively. The mean RBA was 0.032% for 19-norethindrone, compared to the natural ligand.

Glyphosate was tested over a concentration range that fully defined the top of the curve $(10^{-10} \text{ to } 10^{-9} \text{ M})$. The percent binding at this top plateau (101.2-116.9%) was within 25 percentage points of the lowest concentration of the estradiol standard (98.6-101.8%). Glyphosate did not displace more than 25% of the radiolabeled estradiol from the ER at any concentration in the three assay runs. Glyphosate is classified as not interactive in this assay.

C. <u>STUDY DEFICIENCIES</u>: The following deficiencies were noted that are not considered to have had an adverse impact on the results, interpretation or conclusions of this study:

- The protein concentrations used in the saturation binding runs varied between each run, and were approximately 3- to 6-fold greater than recommended.
- Curves were not provided showing the average binding of each test substance across all

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1300, Estrogen Receptor Transcriptional Activation

EPA Contract No. EP10H001452 Task Assignment No. 3-06-2012

(Revisions to MRID 48617307to include laboratory proficiency data; Main study was originally reviewed under TA 2-74-2012)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	minhall folk for
Michelle Sharpe-Kass, M.S.	Date:	7/11/2012
Secondary Reviewer:	Signature:	And Alecterkey
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	7/13/2012
Program Manager: Jack D. Early, M.S.	Signature: _ Date:	Jack D. Eury 7/23/2012
Quality Assurance:	Signature:	Jack D. Eng
Jack D. Early, M.S.	Date:	7/23/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document). Primary Reviewer: <u>Gregory Ackerman, PhD</u> Health Effects Division Secondary Reviewer: <u>Minerva Mercado PhD, DABT</u> Health Effects Division

Signature:	sol
Date:	6/25/15
Signature:	Jess abor MM
Date:	6/29/15 Template version 08/2011

DATA EVALUATION RECORD

STUDY TYPE: Estrogen Receptor Transcriptional Activation (Human Cell Line, HeLa-9903); OCSPP 890.1300; OECD 455.

PC CODE: 417300

TXR#: Not Provided

DP BARCODE: D401747

CAS No.: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (95.93% glyphosate acid, 85.14% calculated glyphosate content)

SYNONYMS: Roundup, N-(phosphonomethyl)glycine

<u>CITATION</u>: Willoughby, J.A. (2012) Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)) Screening Assay with Glyphosate. CeeTox, Kalamazoo, MI. Laboratory Report No.: 6500V-100334ERTA, March 8, 2012. MRID 48671307. Unpublished.

Willoughby, J.A. (2012). Supplemental Information - Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)). Proficiency Data Report. CeeTox, Inc., Kalamazoo, MI. May 15, 2012. MRID 48843501. Unpublished.

SPONSOR: Joint Glyphosate Task Force, LLC, 8325 Old Deer Trail, Raleigh, NC

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In an estrogen receptor transcriptional activation assay (MRID 48617307), hER α -HeLa-9903 cells cultured *in vitro* were exposed to glyphosate (85.14% a.i. Batch # GLP-1103-21149-T) at logarithmically increasing concentrations from 10⁻¹⁰ to 10⁻³ M in cell culture media for 24 hours in three independent runs. The experiments were performed using 96-well plates and each glyphosate concentration was tested in 6 wells/plate in each run. The solvent vehicle was culture media for glyphosate and DMSO (0.1%) for the reference chemicals. Cells were exposed to the test agent for 24±2 hr to induce reporter (luciferase) gene products. Luciferase expression in response to activation of the estrogen receptor was measured using a proprietary luciferase assay.

Glyphosate was tested up to the limit dose, with no precipitation or cytotoxicity observed at any tested concentration. At concentrations up to 10^{-3} M, the relative transcriptional activation of glyphosate was $\leq 2.4\%$.

In the main assays, the responsiveness of the cells to the very weak positive control 17α methyltestosterone was lower than the expected values, indicating a decreased sensitivity of the assay to very weak agonists. Although the conditions of this assay were not optimal to detect very weak activity, glyphosate responses were similar to those of the negative control corticosterone and not comparable to the responses of 17α -methyltestosterone, which was able to reach a maximum of 40.8-42.6% PC. Glyphosate was only able to reach a maximum of 0.8-2.4% PC when tested up to the highest concentration possible based on cytotoxicity. Because the RPC_{Max} < PC₁₀ in both assay runs, glyphosate was considered negative for estrogen receptor transcriptional activation in this test system.

This assay **satisfies** the EDSP Tier 1 Test Order requirement for an Estrogen Receptor Transcriptional Activation assay (OCSPP 890.1300).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1.	<u>Test Facility</u> : Location: Study Director: Other Personnel:	CeeTox, Inc. Kalamazoo, MI J.A. Willoughby K. Rutherford (Director Laboratory Operations); D. Blakeman (Senior Scientist); C. Haines (Scientist); S. McColley (Scientist); B. Meyer (Scientist); B. Wallace (Lead Cell
	Study Period:	Culture Scientist); and C. Toole (Director of Project Management) July 21, 2011 to March 08, 2012
2.	Test Substance:	Glyphosate
	Description:	White crystalline solid (white wetcake)
	Source (Cat #):	Monsanto, Co, St. Louis, MO
	Batch # (Exp Date):	GLP-1103-21149-T (expiry: March 9, 2012)
	Purity:	95.93% glyphosate acid, 85.14% calculated glyphosate acid
	Solubility:	Not reported
	Volatility:	Not reported
	Stability:	NA
	Storage conditions:	35 to 100°F (Room temperature)
	CAS #:	1071-83-6
	Structure:	HO HO O O O O O O O O O O O O O O O O H

3. <u>Reference substances</u>

	Supplier:	17β-estradiol (strong estrogen; positive control) Sigma-Aldrich, St. Louis MO.
	Catalog and Batch #:	E8875, 110M0138V
	Purity:	100%
	CAS # :	50-28-2
		17α-estradiol (weak estrogen)
	Supplier:	Sigma-Aldrich, St. Louis MO.
	Catalog and Batch #:	E8750, 041M4065V
	Purity:	99.72%
	CAS # :	57-91-0
		Corticosterone (negative compound)
	Supplier:	Sigma-Aldrich, St. Louis MO.
	Catalog and Batch #:	27840, BCBC6322V
	Purity:	99.2%
	CAS # :	50-22-6
		17α-methyltestosterone (very weak agonist)
	Supplier:	Sigma-Aldrich, St. Louis MO.
	Catalog and Batch #:	M7252, 060M1543
	Purity:	99%
	CAS # :	58-18-4
4	V - b : - b - (-)	
4.	Vehicle(s)	
	Solvent:	DMSO (reference chemicals) Sigma-Aldrich Cat # D2650, Lot # RNBB7886 (purity 99.8%,
	a .	exp. March, 2013; Run 1); Lot # RNBB8623 (purity 100%, exp. May, 2013; Run 2)
	Solvent control:	DMSO - 0.1% (final concentration)

B. <u>METHODS</u>

- 1. **Cell Culture:** Stably-transfected hER α -HeLa-9903 cells were obtained from the Japanese Collection of Research Bioresources Cell Bank and were verified to be free of mycoplasma infection by a DNA fluorochrome assay (Oct. 5, 2010). Cells were maintained in Eagles Minimum Essential Medium without phenol red, supplemented with 60 mg/L kanamycin and 10% dextran-coated charcoal-treated fetal bovine serum (source not reported), in an incubator under 5% CO₂ at 37 °C. The cells used in this study were passage 26 (rangefinder, 9/20/2011), passage 27 (first run, 9/22/2011), and a new vial of cells was brought up from cryopreservation and used in the second run at passage 16 (10/20/2011). Upon reaching 75-90% confluence, cells were subcultured into test plates.
- Transcriptional Activation Assays: For each test, cells were plated in a 96-well plate 2. (estrogenic activity of plastic not reported) at a density of approximately 1×10^4 cells/100 µL medium/well and allowed to attach for 3 hours. The growth media was replaced with media containing serial log dilutions of glyphosate in cell culture media or of the reference chemicals in DMSO (0.1% final concentration). Cells were incubated for 24±2 hours at 37 $\pm 1^{\circ}$ C. Cytotoxicity was determined by two-read propidium iodide uptake. Transcriptional activation of the estrogen receptor was determined as described in CeeTox Standard Operating Protocol (SOP) 2041. A list of reagents was provided, but the assay reagent was classified as proprietary information, and the SOP was not provided.
- **Preliminary Test:** A preliminary test evaluating glyphosate concentrations ranging from a. $10^{-6.5}$ to 10^{-3} M was conducted to determine the appropriate concentration range and to determine concentrations resulting in insolubility and/or cytotoxicity.
- b. **Proficiency Chemicals:** Responsiveness of the test system was tested on March 5, April 12 and April 28, 2011(MRID 48843501), using cells at passage 15, 25 and 28, respectively. Based on passage numbers and assay dates it is unlikely that cells used for proficiency testing are from the same frozen stock as cells used in main assays. Cells were tested using the following proficiency chemicals, each chemical tested in duplicate on separate days:

Compound	CAS No.	Concentration Range (M)	Expected Response ^a	Notes
Diethylstilbestrol (DES)	56-53-1	10^{-14} to 10^{-8}	Positive	
17α-Ethynyl estradiol (EE)	57-63-6	10 ⁻¹⁴ to 10 ⁻⁸	Positive	
Hexestrol	84-16-2	10^{-13} to 10^{-7}	Positive	
Genistein	446-72-0	10^{-12} to 10^{-5}	Positive	Cytotoxic at 0.01 ^b , 0.1, and 1 mM
Estrone	53-16-7	10^{-12} to 10^{-6}	Positive	
Butyl paraben	94-26-8	10^{-11} to 10^{-4}	Positive	Cytotoxic at 0.1 ^b and 1 mM
1,3,5-Tris(4-hydroxyphenyl)benzene ^c	15797-52-1	10^{-12} to 10^{-5}	Positive	Cytotoxic at 100 μ M. PC _{Max} approx. 50% of PC. Binds to hER α and has ER antagonistic activity
Dibutyl phthalate (DBP)	84-74-2	10 ⁻¹¹ to 10 ⁻⁴	Negative ^d	Cytotoxic at 1 mM
Atrazine	1912-24-9	10^{-11} to 10^{-4}	Negative	Cytotoxic at 1 mM ^b
Corticosterone	50-22-6	10^{-10} to 10^{-4}	Negative	If not cytotoxic at 1 mM, then that should be the highest tested concentration

Positive = $RPC_{Max} \ge 10\%$ of the response of the positive control in at least 2 of 2 (or 2 of 3) runs а

Negative = RPC_{Max} fails to achieve at least 10% of the response of the positive control in 2 of 2 (or 2 of 3) runs

- c Compound selected to challenge solubility and cytotoxicity.
- d DBP is negative for ER α mediated transcriptional activation, but may not be negative for non-ER β mediated transcriptional activation. A positive result would indicate that the system is detecting activity other than that due to pure ER α , and is therefore unacceptable.
- c. <u>Reference Chemicals</u>: To ensure the stability of the response from the cell line, eight concentrations of each of the following reference chemicals were included in each plate in the current assay, along with the test chemical:

Reference Chemical	CAS No.	Concentration Range	Class
17β-estradiol	50-28-2	10^{-15} to 10^{-8}	Strong estrogen
17α-estradiol	57-91-0	10^{-13} to 10^{-6}	Weak estrogen
Corticosterone	50-22-6	10^{-11} to 10^{-4}	Negative compound
17α-methyltestosterone	58-18-4	10^{-12} to 10^{-5}	Very weak agonist

3. <u>Data analysis</u>: To obtain the relative transcriptional activity (RTA) compared to the 1 nM E2 positive control (PC), the luminescence signals from the concurrent plate were analyzed by subtracting the mean value of the vehicle control from each well value to normalize the data; each normalized value was then divided by the mean value of the normalized PC. The resulting value was multiplied by 100 in order to express the RTA as a percentage of the PC. The test material was defined as negative for inducing estrogen receptor transcriptional activation if the RPC_{Max} < PC₁₀ in at least 2 of 2 runs. Log EC₅₀ and Hill slope values are calculated only if a positive response is observed. Coefficients of variation (CV) were calculated for the luminescence data triplicates. Concentrations showing >20% cytotoxicity or evidence of insolubility were excluded from analyses.

4. <u>Definitions</u>

- EC_{50} = concentration of agonist that induces a response halfway between the baseline (bottom) and maximum (top) response
- PC_{10} = concentration of a test chemical at which the response is 10% of the response induced by the positive control (E2 at 1 nM) in each plate
- PC_{50} = concentration of a test chemical at which the response is 50% of the response induced by the positive control (E2 at 1 nM) in each plate
- RPC_{Max} = maximum level of response induced by a test chemical, expressed as a percentage of the response induced by the positive control (1 nM E2) on the same plate

 PC_{Max} = concentration of a test chemical inducing the RPC_{Max}

II. RESULTS

A. <u>PRELIMINARY TEST</u>: In order to identify a suitable top concentration for use in the transcriptional activation assays, a preliminary cytotoxicity and precipitation assay was conducted (Table 1). No precipitation or cytotoxicity was observed at any tested concentration. Based on these results, logarithmically increasing concentrations from 10^{-10} to 10^{-3} M were selected for the assay.

Concentration (M)	% Viability ^b	Comments
10 ⁻³	90	Only concentration assessed for precipitation; negative
10 ^{-3.5}	98	
10 ⁻⁴	95	
10 ^{-4.5}	99	
10 ⁻⁵	97	
10 ^{-5.5}	99	
10 ⁻⁶	103	
10 ^{-6.5}	99	

a Data were obtained from page 21 of the study report.

b If viability is <80%, the concentration is considered cytotoxic.

B. POSITIVE AND NEGATIVE REFERENCE CHEMICALS

Proficiency Chemicals: The laboratory proficiency assays using the required reference 1. compounds were not included in the original study report, but were provided to the Agency at a later date (MRID 48843501). In addition, the proficiency testing was conducted with cells that were not of the same frozen stock as the cells used in the main assay. The responsiveness of cells to the required proficiency chemicals was performed in duplicate on different days for each chemical. The reported responses are summarized in Table 2a. In the proficiency tests, the reference chemicals 17β -estradiol, 17α -estradiol and 17α methyltestosterone were tested concurrently with each run of the assay (Table 2b). In the first run, the responsiveness of 17β-estradiol indicated decreased sensitivity to strong agonists, and the response to 17α -methyltestosterone showed an increased responsiveness to very weak agonists; despite the minor deviations this run is considered acceptable. Run 2 was inadequate as the PC₅₀ could not be calculated for 17α -methyltestosterone indicating a decreased sensitivity to very weak agonists. Run 3 was acceptable as 17β-estradiol and 17α -methyltestosterone performed within the expected range, but the Hill Slope for 17α -estradiol was higher than expected. The PC-induced fold induction for the three reference chemicals was within the Guideline-recommended historical range of 4- to 30-fold in Runs 1 and 3, but fold induction was 75.1- to 84.7-fold in Run 2 with no explanation given for this 3- to 4-fold increase. Although reportedly performed, the results of the cytotoxicity assay were not provided for review. Raw data pertaining to the RTA of each chemical were not reported, but the scales of the graphs provided indicate genistein and butyl paraben had maximum RTAs well above 400%.

Compound	Evaceted Despense	Lab Response			
Compound	Expected Response	Run 1	Run 2	Run 3	
Diethylstilbestrol	Positive	Positive	Positive	NA	
17α-Ethynyl estradiol	Positive	Positive	Positive	NA	
Hexestrol	Positive	Positive	Positive	NA	
Genistein	Positive	Positive	Positive	NA	
Estrone	Positive	Positive	Positive	NA	
Butyl paraben	Positive	Positive	Positive	NA	
1, 3, 5-Tris(4-hydroxyphenyl)benzene	Positive	NA	Positive	Positive	
Dibutyl phthalate	Negative	Negative	Negative	NA	
Atrazine	Negative	Negative	NA	Negative	
Corticosterone	Negative	Negative	NA	Negative	

NA = not applicable. The chemical was not tested at this time.

Table 2b. Performance Criteria for Reference Chemicals in the Proficiency test							
Reference Chemical	Acceptable		Values		Acce	otable	
Parameter	Range	Run 1	Run 2	Run 3	Yes	No	
17β-estradiol							
Log PC ₅₀	-11.4 to -10.1	-9.6	-11.3	-10.6		Run 1	
Log PC ₁₀	<-11	-11.5	-12.5	-12.1	Х		
Log EC ₅₀	-11.3 to -10.1	-9.0	-11.3	-10.6		Run 1	
Hill Slope	0.7 to 1.5	1.2	0.9	0.8			
Test range (M)	10^{-14} to 10^{-8}	10^{-14} to 10^{-8}	10^{-14} to 10^{-8}	10^{-14} to 10^{-8}	Х		
17α-estradiol							
Log PC ₅₀	-9.6 to -8.1	-8.3	-9.4	-8.7	Х		
Log PC ₁₀	-10.7 to -9.3	-9.3	-10.5	-9.9	Х		
Log EC ₅₀	-9.6 to -8.4	-8.2	-9.3	-8.9		Run 1	
Hill Slope	0.9 to 2.0	0.9	0.9	2.9		Run 3	
Test range (M)	10^{-12} to 10^{-6}	10^{-12} to 10^{-6}	10^{-12} to 10^{-6}	10^{-12} to 10^{-6}	Х		
17α-methyltestosterone							
Log PC ₅₀	-6.0 to -5.1	-6.2	NC	-5.2		Run 1, 2	
Log PC ₁₀	-8.0 to -6.2	-8.1	-6.3	-7.7		Run 1	
Test range (M)	10^{-11} to 10^{-5}	10^{-11} to 10^{-5}	10^{-11} to 10^{-5}	10^{-11} to 10^{-5}	Х		

Data were obtained from : Willoughby, J.A. (2012) Estrogen Receptor Transcriptional Activation (Human Cell Line (HeLa-9903)): Proficiency Data Report. CeeTox, Inc.

2. <u>Reference Chemicals</u>: Values derived from the concentration response curve (*e.g.*, Log PC_{50} , Log PC_{10} , Log EC_{50} , Hill slope) for the four reference chemicals that were run concurrently with the test chemical are included in Table 3.

All performance criteria were met for 17β -estradiol, and the only deficiency for 17α -estradiol was a Hill Slope of 2.3 in the third run, which is +0.3 outside the validated range. The cells' responses to 17α -methyltestosterone indicate decrease sensitivity to detect a very weak agonist. This could result in false negative responses from test substances which are weak agonists.

Reference Chemical	4 (U D	Val	Acceptable		
Parameter	Acceptable Range	Run 1	Run 3	Yes	No
17β-estradiol					
Log PC ₅₀	-11.4 to -10.1	-10.4	-10.4	Х	
Log PC ₁₀	<-11	-11.4	-11.4	Х	
Log EC 50	-11.3 to -10.1	-10.4	-10.4	Х	
Hill Slope	0.7 to 1.5	1.2	1.3	Х	
Test range	10^{-14} to 10^{-8} M	10^{-15} to 10^{-8} M	10^{-15} to 10^{-8} M	Х	
17α-estradiol					
Log PC ₅₀	-9.6 to -8.1	-8.6	-8.6	Х	
Log PC ₁₀	-10.7 to -9.3	-9.6	-9.6	Х	
Log EC ₅₀	-9.6 to -8.4	-8.7	-8.8	Х	
Hill Slope	0.9 to 2.0	1.6	2.3		Run 2
Test range	10 ⁻¹² to 10 ⁻⁶ M	10^{-13} to 10^{-6} M	10^{-13} to 10^{-6} M	Х	
Corticosterone					
Test range	10 ⁻¹⁰ to 10 ⁻⁴ M	10 ⁻¹¹ to 10 ⁻⁴ M	10^{-11} to 10^{-4} M	Х	
17α-methyltestosterone					
Log PC ₅₀	-6.0 to -5.1	NA ^b	NA ^b		Х
Log PC ₁₀	-8.0 to -6.2	-5.9	-5.9		Х
Test range	10 ⁻¹¹ to 10 ⁻⁵ M	10 ⁻¹² to 10 ⁻⁵ M	10 ⁻¹² to 10 ⁻⁵ M	Х	

a Data were obtained from page 24 of the study report.

b Not calculable as the responsiveness of the cells was ≤43%

C. <u>DEFINITIVE ASSAY</u>

1. <u>Vehicle and Positive Controls</u>: Data for the vehicle and positive controls are included in Table 4. The overall mean TA value for the vehicle control was 19913 for the first run and 10463 for the third run, and the overall mean TA value for the positive control was 532425 for the first run and 110517 for the third run. The induction for the positive control ranged from 27- to 106-fold. The mean normalized value for the positive control was 512513 for the first run and 1100055 for the third. The PC₅₀ (50% of the maximum response) for E2 in this assay is 256257 for the first run and 550027 for the third and the PC₁₀ (10% of the maximum response) is 51251 for the first run and 1100055 for the third run and 1100055 for the third.

TABLE 4. Transcriptional Activation (TA) Response of Vehicle and Positive Control ^a								
Sample	Vehicle	Control	Positive Control ^b			Normalized Positive Control ^b		
Runs	Mean	SD	Mean	SD	Fold Induction ^c	Mean	SD	
1	19913	4069	532425	130022	26.7	512513	130022	
3	10463	2413	1110517	194915	106.1	1100054	194915	

a Claculated by reviewer from data were obtained from pages 33 and 34 of the study report.

b Positive control was 17β -estradiol (E2) at 1 nM.

c Fold-induction = (mean TA of PC)/(mean TA of VC)

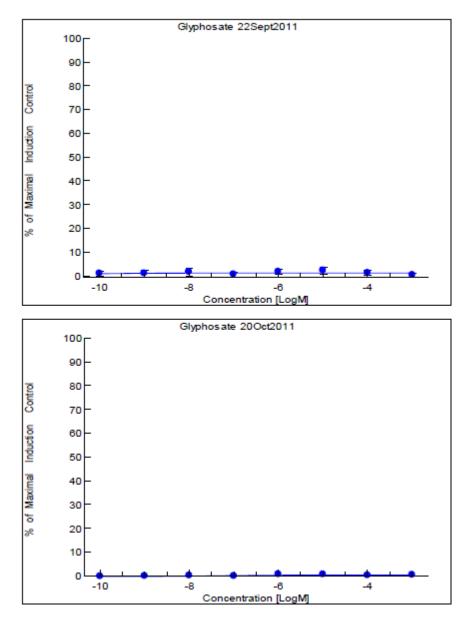

2. <u>Test Material</u>: Relative (to the PC) transcriptional activation at each concentration of the test chemical during the two reported assay runs is presented in Table 5. The concentration-response curves depicting fold induction of relative transcriptional activation is presented in Figure 1 below. The mean RPC_{Max} was 2.4% for the first run and 0.8% for the third run, and the associated PC_{Max} was 10^{-5} and 10^{-6} M, respectively. Because the RPC_{Max}<PC₁₀ in

TABLE 5. Relative Transcriptional Activation (RTA) of Glyphosate ^a							
Parameter	RTA (mean ± SD); % of Positive Control (PC)						
	Ru	n 1	Run 2				
Conc. (M)	Mean	SD	Mean	SD			
10 ⁻³	0.5	0.8	0.5	0.3			
10 ⁻⁴	1.3	1.1	0.3	0.2			
10 ⁻⁵	2.4	1.4	0.7	0.3			
10 ⁻⁶	1.8	1.1	0.8	0.3			
10 ⁻⁷	0.8	1.0	0.0	0.3			
10 ⁻⁸	1.8	1.5	0.3	0.3			
10 ⁻⁹	1.2	1.6	0.0	0.3			
10 ⁻¹⁰	1.1	1.0	-0.1	0.3			
Log EC 50	NA		NA				
Hill Slope	NA		NA				
RPC _{Max}	2.4%		0.8%				
РСмах	10	-5	10-6				
PC 50	N	A	NA				
PC 10	N	A	NA				

both reported runs, glyphosate was considered negative for estrogen receptor transcriptional activation in this test system.

a Data were obtained from page 22 and 23 of the study report. NA = Not Applicable

FIGURE 1. Fold Induction of Relative Transcription Activation (RTA) of Glyphosate Compared to the Positive Control.

3. <u>Performance Criteria</u>: For the proficiency chemicals, while the log PC_{50} , log PC_{10} , log EC_{50} , and Hill slope values for the concurrent reference chemicals fell within or near the acceptable ranges (Table 3), the full response of the cells to the reference chemicals was not satisfactory, as detailed above in Section B.2. For the concurrent reference chemicals, while most performance criteria were met for 17β -estradiol, and 17α -estradiol the cells' responses to 17α -methyltestosterone indicate decrease sensitivity to detect a very weak agonist. For 17α -methyltestosterone, the mean RPC_{Max} was 40.8% for the first run and 42.6% for the second run.

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATORS' CONCLUSIONS</u>: Three independent runs were conducted, however, the second run was considered invalid because the reference substance data, in particular the 17α -estradiol Hill Slope, did not meet the acceptance criteria. These data were not included in the study report. Cytotoxicity and precipitation were not observed at any of the tested concentrations of glyphosate. In the two reported assays, the RPC_{Max} was 2.4% and 0.8% in the first and third run, respectively. Based on these results it can be concluded glyphosate is not an agonist of hER α over the concentration range tested.
- **B.** <u>AGENCY COMMENTS</u>: Glyphosate was tested up to the limit dose, with no precipitation or cytotoxicity observed at any tested concentration. At concentrations up to 10^{-3} M the RTA of glyphosate was $\leq 2.4\%$, indicating that it is negative for estrogenic activity under the conditions of this assay

In the main assays, the responsiveness of the cells to the very weak positive control 17α methyltestosterone was lower than the expected values, indicating a decreased sensitivity of the assay to very weak agonists. Although the conditions of this assay were not optimal to detect very weak activity, glyphosate responses were similar to those of the negative control corticosterone and not comparable to the responses of 17α -methyltestosterone, which was able to reach a maximum of 40.8-42.6% PC. Glyphosate was only able to reach a maximum of 0.8-2.4% PC when tested up to the highest concentration possible based on cytotoxicity. Because the RPC_{Max} < PC₁₀ in both assay runs, glyphosate was considered negative for estrogen receptor transcriptional activation in this test system.

- C. <u>STUDY DEFICIENCIES</u>: The following deficiencies were noted:
 - The cells responded inadequately (<50% RTA) to the very weak estrogen, 17α -methyltestosterone.
 - The source of the fetal bovine serum was not provided.

Data Requirement: EPA DP Barcode 401746 OECD Data Point EPA MRID 48671311 EPA Guideline 890.1350 Fish Short-Term Reproduction Assay **Test Material:** Glyphosate Purity (%): 85.14% Common Name Glyphosate **Chemical Name IUPAC** N-phosphonomethylglycine CAS Name Not Reported CAS No. 1071-83-6 Synonyms CP 067573 a Ston EPA PC Code 417300 Primary Reviewer: John Marton, Ph.D. Date: 2/13/13 Environmental Scientist, CDM Smith Date: 2/25/13 Secondary Reviewer(s): Teri S. Myers, Ph.D. Environmental Scientist, CDM Smith Digitally signed by AMY BLANKINSHIP DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, cn=AMY Date: Additional Reviewer: Amy Blankinship AMY BLANKINSHIP dnQualifier=000040917 Date: 2015.06.15 17:35:52-04'00' **OPP/EFED/ERB6** Digitally signed by ROBIN STERNBERG Additional Reviewer: Robin Sternberg Date: DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, cn=ROBIN STERNBERG, dnQualifier=0000039126 Date: 2015.06.08 15:38:21 -04'00' Kohin Sternberg OPP/EFED/ERB1 Date Evaluation Completed: 6/8/15

Data Evaluation Record on the Fish Short-Term Reproduction Assay with Glyphosate

EPA MRID Number 48671311

Page 1 of 55 Version: 22 September 2011

CITATION: Schneider, S.Z., K.H. Martin, T.Z. Kendall, and H.O. Krueger. 2012. Glyphosate: Fish Short-Term Reproduction Assay with the Fathead Minnow (*Pimephales promelas*). Unpublished study performed by Wildlife International, Ltd., Easton, MD 21601. Laboratory report number 707A-102A. Study sponsored by Joint Glyphosate Task Force c/o Data Group Management, Inc., Raleigh, NC 27615. Study completed April 11, 2012.

Note: The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

Disclaimer: The guideline recommendations in this DER template are offered as a general reference to aid in preparation of the DER. The purpose of these recommendations is not to serve as substitute for the Test Guidelines, nor to provide any guidance on how the study should be conducted.

EXECUTIVE SUMMARY

The 21-day short-term reproduction assay of glyphosate with Fathead minnow (*Pimephales promelas*) was conducted under flow-through conditions. Adult fish (2 males and 4 females in each group, 4 groups/treatment, 5.5 months of age) were exposed to glyphosate (85.14% purity) at nominal concentrations of 0 (negative control), 0.048, 0.24, 1.2, 6.0, and 30 mg a.i./L. Mean-measured concentrations were <0.03 (<LOQ; negative control), 0.046, 0.23, 1.2, 6.2, and 33 mg a.i./L. The high test concentration was based on 1/3 of a 96-hr LC_{50} value. The test system was maintained at 24.3 to 29.1°C and a pH of 8.0 to 8.3.

Survival was 100% in the negative control, 0.046, 0.23, 6.2 and 33 mg a.i./L treatment groups and 95.8% in the 1.2 mg a.i./L treatment group. Glyphosate did not result in any significant increases or decreases in weight or length for either sex at any treatment level. There were no observed effects on secondary sex characteristics or clinical signs (*i.e.*, behavioral and other sublethal effects) in males or females in any treatment group.

Spawning and mean fecundity in the negative control were at least every 4 days in each replicate and 23.5 eggs/female/day/replicate (range: 23.2-23.9 eggs/female/day), respectively; fertilization success in the negative control was 97.3%. Fecundity and fertilization success were not significantly different from the negative control for any treatment group.

Plasma vitellogenin (VTG) was significantly decreased 55% (p<0.05) in female fish at the mid hightreatment level (6.2 mg a.i./L) compared to the negative control; male VTG was unaffected by treatment. There were no effects in gonado-somatic index (GSI) or nuptial tubercle scores for male or females (none noted in females) in any treatment group relative to the negative control. Although there were gonadal histopathology observations reported for both males and females (*e.g.*, minimal to mild granulomatus inflammation, oocyte atresia, increased mature oocytes), there were no treatment-related patterns in gonadal histopathology for males or females.

> Page 3 of 55 Version: 22 September 2011

All performance criteria were met for this study, except for a slight deviation in temperature. Temperature exceeded the recommended range $(25\pm1^{\circ}C)$, for less than 24 hours on Day 7 when the maximum temperature reached 29.1°C (range of 28.6-29.1°C); deviation occurred in three replicates each in the 1.2 mg a.i./L and 6.2 mg a.i./L groups). All fish were reported as normal throughout the test, and there was no mortality during this temperature deviation. This deviation did not impact the ability to interpret the results. It is also noted that there were 3 males and 3 females (as oppose to recommended 2 males and 4 females) in replicate D of the 33 mg a.i./L treatment group due to misidentification during allocation at pre-exposure. Inclusion or exclusion of data from this fish did not affect interpretation of the results in the study.

This assay satisfies the EDSP Tier 1 Test Order requirements for a Fish Short-Term Reproduction Assay (OCSPP Guideline 890.1350).

Results Synopsis:

Test organism age at test initiation: 5.5 months Mean body weight at test initiation: males: 1.6 g; females: 0.9 g (N = 10 at test initiation from a subsample of the batch used for the test) Mean length at test initiation: Not measured Test type: flow-through

EPA MRID Number 48671311

¥ ٩ AN AN AA Ε2 ш Plasma ΔA ΔA AA AA AA Σ ٩Z AA AA AA AA ш Plasma T AA AA AN AA AN Σ Yes ٩ ٩ ۶ ш ۶ Plasma VTG ۶ ٩ ٩ ۶ ۶ Σ Gonadal Histo. ۶ No ٩ ۶ ۶ ш ٩ No Ŷ å ۶ Σ ۶ ٩ ٩ å å ш GSI ۶ ٩ ٩ ۶ ٩ Σ **Tubercle Score** ٩ å å ۶ ٩ ш ٩ ٩ å å ۶ Σ Success Fert. å Ŷ å å å Fecundity ۶ ٩ å ۶ Ŷ Treatment measured] (mg a.i./L) [mean-0.046 0.23 1.2 6.2 33

Table 1: Summary of Reproductive and HPG Effects^{1,2} in the Fish Short-Term Reproduction Assay (FSTRA) with Glyphosate.

^{VTG} Vitellogenin. ^T Testosterone. ^{NA} Not applicable. ^M Male. Histo. Histopathology. ^{GSI} Gonado-Somatic Index. Fert. Fertilization. ^{E2} 17β-estradiol. ^F Female. Abbreviations:

A "yes" indicates a significant difference based on comparison to the negative (clean water) control, unless otherwise specified.

~

The criteria for significance are described in the Reviewer's Analysis and Statistical Verification sections of the DER. Conclusions regarding histopathology may be heavily weighted by the expert opinion of a board-certified pathologist.

Page 5 of 55 Version: 22 September 2011

I. MATERIALS AND METHODS

- Guideline Followed: This study was conducted following guidelines outlined in the U.S. EPA Series 890- Endocrine Disruptor Screening Program Test Guidelines, OCSPP Number 890.1350 *Fish Short-Term Reproduction Assay*; and the OECD Guidelines for Testing of Chemicals, Guideline 229: *Fish Short-Term Reproduction Assay*. The following deviations were noted:
- 1. Fecundity during the pre-exposure period ranged from 12.1 to 28.3 eggs/female/reproductive day. Guidance recommends fecundity be at least 15 eggs/female/reproductive day. Also, while the breeding groups were ranked by fecundity from highest to lowest and grouped/blocked into groups of 6 starting with the six top performers, the allocation of the breeding groups to the treatment groups did not appear to be random but rather followed the same pattern for each block. However, fecundity rates between replicates during the exposure period were consistent with no observed decrease or increase between treatments.
- The reviewer-calculated flow rate (41.7 mL/min) was slightly less than recommended (45 mL/min). The study report noted that test solutions were pumped from the mixing chambers into the test chambers at a target rate of 44 mL/min.
- 3. Temperature exceeded the recommended range 25±1°C, for less than 24 hours on Day 7 when the maximum temperature reached 29.1°C (deviation occurred in replicates B, C, and D in 1.2 mg a.i./L and replicates A, B, and C in 6.2 mg a.i./L where temperatures ranged from 28.6 to 29.1°C). All fish were reported as normal throughout the test and there was no mortality during this temperature deviation.
- 4. Unionized ammonia and residual chlorine concentrations were not reported.
- 5. The reported light intensity (450-1976 lux) ranged outside of the recommended minimum (540 lux) and maximum (1080 lux).
- 6. The ratio of males to females in the highest treatment group, replicate D was 3 males, 3 females, as oppose to 2 males, 4 females due to a male fish mistaken as a female during the

pre-exposure allocation procedure. Fecundity rates for this replicate were adjusted and this missexed fish did not alter the interpretation of the results in this treatment.

These deviations do not impact the acceptability of the study.

- Compliance: Signed and dated No Data Confidentiality, GLP, and Quality Assurance statements were provided. This study was conducted in compliance with Good Laboratory Practice Standards as published by the U.S. Environmental Protection Agency (40 CFR Parts 160 ad 792); and OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17), with the following exception: periodic analyses of water for potential contaminants were not performed according to Good Laboratory Practice Standards, but were performed using a certified laboratory and standard US EPA analytical methods.
- A. Test Material Glyphosate acid

Description: Solid

OECD recommends describing water solubility, melting/boiling point stability in water and light, pKa, Pow or Kow, vapor pressure of test compound, expiration date.

Lot No./Batch No. : GLP-1103-21149-T (Lot #)

Purity: 85.14%

Impurities: None reported

Stability of Compound: Stable. Mean-measured concentrations yielded recoveries of 96-110% of nominal.

Storage Conditions of

Test Chemicals: Stored under ambient conditions

Page 7 of 55 Version: 22 September 2011

EPA MRID Number 48671311

B. Test Organism

Table 2: General Information About the Test Species and Acclimation.

-	-		
Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Species common name:	Fathead Minnow		EPA recommends fathead minnow (Pimephales
Species scientific name:	Pimephales promelas		promelas).
Species strain (if stated):	Not reported		
Were fish obtained from a single laboratory stock?	Yes	Fish were originally obtained from Osage Catfisheries, Inc., Osage Beach Missouri	EPA recommends that fish be from a single laboratory stock.
Were acclimation conditions same as definitive test?	Yes		EPA recommends that fish be acclimated under water quality and illumination conditions that are similar to the definitive test.
Acclimation period:	Culture fish were maintained for approximately 2 months prior to the pre-exposure period (which lasted for 19 days).		EPA recommends a minimum two-week acclimation period. Note that the acclimation period is different from the subsequent, in situ pre-exposure phase.

Page 8 of 55 Version: 22 September 2011

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Details on health:	During the 7 days prior to pre-		EPA recommends that mortality during the 7
	exposure, the fish showed no		days prior to the pre-exposure phase be less
	signs of disease or stress and		than 5% of the culture population. If mortality
	mortality was <5%. The fish		during these 7 days is greater than 10%, EPA
	did not receive treatment for		recommends that the fish be rejected. If
	disease during the acclimation		mortality is between 5-10%, EPA recommends
	period, the two-week pre-		that fish be held another 7 days. If mortalities
	exposure period, or the		greater than 5% occur during this extended
	exposure period.		acclimation period, EPA recommends that the
			fish not be used.
Type of food:	Commercial flake food (Sera		EPA recommends that fish be fed frozen brine
	Vipan) supplemented with brine		shrimp twice per day to promote active
	shrimp nauplii (<i>Artemia</i> sp)		reproduction and maintain body condition.
Source of food:	Flake food was supplied by		
	Sera, North America and brine		
	shrimp were supplied by Brine		
	Shrimp Direct, Ogden, Utah.		
Frequency of feeding:	2 times/day		

Version: 22 September 2011

Page 9 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Details on feeding:	Fish were not fed for at least		
	12 hours prior to test		
	termination to allow for		
	clearance of the digestive tracts		
	before terminal weight		
	measurements were made.		
	Feeding rates in each replicate		
	were adjusted approximately		
	weekly, if necessary, to account		
	for mortality. Uneaten food and		
	fecal material were removed		
	from the test chambers daily by		
	siphoning.		

Version: 22 September 2011

Page 10 of 55

EPA MRID Number 48671311

Table 3: Fish Selection and Pre-Exposure Performance.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Age at test initiation:	5.5 months		EPA recommends reproductively mature (sexually dimorphic) fish, 4.5 - 6 months old.
Mean weight of males at test initiation (if determined):	1.6 g	Based on sub-sample (N=10) of experimental population	EPA recommends that a subsample of fish be weighed before the test to estimate the mean
Range of individual weights (males) at test initiation (if determined):	Not reported	The range of individual weights of male and female fish at the start of the pre-exposure period was within ±20% of the mean weight of each sex.	weight for each sex. It is recommended that the individual weight of each fish selected for the test be within ±20% of the estimated mean for each sex.
Mean weight of females at test initiation (if determined):	0.9 g	Based on sub-sample (N=10) of experimental population	
Range of individual weights (females) at test initiation (if determined):	Not reported	The range of individual weights of male and female fish at the start of the pre-exposure period was within ±20% of the mean weight of each sex.	
Mean length of males at test initiation (if determined):	Not measured		

Page 11 of 55 Version: 22 September 2011

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Mean length of females at test initiation (if determined):	Not measured		
Duration of pre-exposure phase:	19 days		EPA recommends a minimum of 14 days.
Were pre-exposure conditions identical to the definitive test?	Yes		EPA recommends that pre-exposure conditions, including temperature, photoperiod, feeding, etc., be identical to definitive test conditions.
Number of pre-exposure tanks:	40	Nearly twice the number of breeding groups was maintained in the pre-exposure period as in the exposure period so that breeding groups with a proven history of spawning could be selected for inclusion in the exposure phase of the test.	EPA recommends that additional tanks set up at the beginning of pre-exposure will ensure that sufficient replicates with the correct sex ratio are available for the definitive test.
Number of males per tank:	2		
Number of females per tank:	4		

Version: 22 September 2011

Page 12 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Pre-exposure fecundity:	≥12.1 eggs / female /	Of the 40 tanks established during the pre-	EPA recommends that pre-exposure fecundity in
	reproductive day/	exposure period, the top 24 tanks (based	each replicate (tank) selected for use in the
	replicate	on fecundity) were selected for use in the	definitive test be at least 15
		definitive test. The top 24 tanks ranged from	eggs/female/reproductive day/replicate during
		12.1 to 28.3 eggs/female/reproductive day.	the 7 days prior to the definitive test.
Number of spawns during pre-	>2 times in 7 days		EPA recommends that spawning occur at least
exposure:			twice in the 7 days prior to the definitive test.
Details on pre-exposure:	Pre-exposure was	A replicate aquarium was considered	
	conducted under	suitable for use in the test if spawning in	
	conditions comparable to	that aquarium occurred at least twice during	
	those used in the	the 7-day period immediate preceding test	
	definitive test.	initiation. Any pre-exposure aquaria with	
		mortalities, incorrect sex ratio, or poor	
		reproductive performance were excluded	
		from use in the test.	

Version: 22 September 2011

Page 13 of 55

EPA MRID Number 48671311

C. Exposure System

System and Test Vessel Characteristics Table 4: Summary of Information on the Evnosure

I able 4. Summary of mormano	i uli ille Exposure aysterii	rable 4. Summary or mormanon on me Exposure System and rest vesser characteristics.	
Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Type of exposure:	Flow-through		EPA recommends the use of a flow-through
			system. As noted in the Corrections and
			Clarifications document', the use of a static
			renewal system is not recommended for this
			assay.
Type of flow-through dilution	Continuous-flow diluter		Intermittent flow proportional diluters or
system:			continuous flow serial diluters are
			recommended.²
	-		

U.S. Environmental Protection Agency (EPA). (2011). Corrections and Clarifications on Technical Aspects of the Test Guidelines for the Endocrine Disruptor Screening Program Tier 1 Assays (OCSPP Test Guideline Series 890). March 3, 2011. Office of Chemical Safety and Pollution Prevention (OCSPP), Washington, D.C. (http://www.epa.gov/endo/pubs/assayvalidation/clarificationdoc.pdf).

Additional guidance for aquatic test design is located in OCSPP Guideline 850.1000, Special Considerations for Conducting Aquatic Laboratory Studies.

2

*.*___

Page 14 of 55 Version: 22 September 2011

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Flow-through rate:	41.7 mL/min	Calculated based on 6 volume additions per day and a test solution volume of 10 L. The test solutions were pumped from the mixing chambers into the test chambers at a target rate of 44 mL/min.	Recommended flow-through rate is 45 mL/min (2.7 L/hr), or at least 6 total volume exchanges per day.
Details on toxicant mixing for flow-through systems:	Fluid metering pumps were used to deliver volumes of a single test substance stock solution to mixing chambers indiscriminately assigned to each treatment where it was mixed with well water. Flow was controlled using rotameters.	Pumps and rotameters were calibrated prior to the test and verified or recalibrated, if necessary, approximately weekly during the test. The proportion of the test solution that was pumped into each replicate test chamber was checked prior to the test and approximately weekly during the test to ensure that flow rates varied by no more than ±10% of the mean flow rate for the replicates.	Recommended toxicant mixing for flow- through systems: 1) Mixing chamber is recommended but not required; 2) Aeration is not recommended for mixing; 3) A demonstration that the test solution is completely mixed before introduced into the test system is recommended; 4) The recommended flow splitting accuracy is within 10%.
Aeration?	QN		EPA recommends aeration if dissolved oxygen reaches ≤4.9 mg/L (≤ 60% saturation).

Version: 22 September 2011

Page 15 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Source of dilution water:	Water was obtained from a		EPA recommends natural or reconstituted
	well ~40 m deep on-site.		water; it is recommended that natural water
	Water was passed through		be sterilized with UV and tested for
	a sand filter, pumped into a		pesticides, heavy metals, and other possible
	storage tank, and aerated.		contaminants. OECD accepts any water in
	Prior to use, water was		which the test species show control survival
	filtered to 0.45 µm and		at least as good as indicated in the test
	passed through a UV		guideline.
	sterilizer.		
Was dilution water analyzed for	Yes. See Reviewer's		
pesticides, heavy metals, and	Comments.		
other contaminants?			
Test vessel type/materials:	Glass		EPA and OECD recommend that water-
			contact portions of the system not
			compromise the study (e.g., all glass vessels
			or glass vessels with stainless steel frames
			are acceptable examples).
Test vessel size:	12 L		EPA recommends the use of 18 L test
			chambers (e.g., 40 x 20 x 20 cm).

Version: 22 September 2011

Page 16 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Fill volume:	10 L	The depth of the test water in a representative chamber was approximately 13 cm.	EPA recommends 10 L solution per tank.
Spawning substrate material:	Tile consisting of an inverted semi-circular section of PVC pipe.	Each aquarium contained three spawning tiles.	EPA recommends that each tank contain three semi-circular spawning substrates, e.g., aged PVC pipe, 10 - 20 cm in length, split
Spawning substrate size:	~10 cm		lengthwise.
Additional details on exposure system:	None		

EPA MRID Number 48671311

Table 5: Summary of Water Quality Characteristics in the Test System.

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
				Weekly (in each test	EPA recommends temperature $25\pm p^{o}C$; inter-
				chamber)	replicate and inter-treatment differentials
				Continuously	should not exceed PC.
				(one test chamber	
Temperature (°C)	24.3	29.1	25.4	during the pre-	
				exposure period and	
				in one negative control	
				replicate during the	
				exposure period)	
2	0	0	•	Weekly (in each test	EPA recommends pH 6.5 to 9.0.
E.	0.0	0.0	 0	chamber)	
		0	C M	Weekly (in each test	EPA recommends dissolved oxygen (DO)
	0	r. ,	7.7	chamber)	≥4.9 mg/L (>60% air saturation)

Version: 22 September 2011

Page 18 of 55

EPA MRID Number 48671311

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
Total alkalinity (mg/L as CaCO $_3$)	166	180	173.5	Weekly (one replicate test chamber of the	EPA recommends total alkalinity >20 mg/L as CaCO ₃ .
Hardness (mg/L as CaCO ₃)	041	148	144.5	negative control and the highest concentration treatment group, with measurements typically alternating between replicates at each measurement interval)	
Total organic carbon (mg/L)	1	;	~	Once in the 4-week period prior to test	EPA recommends that total organic carbon in dilution water be $\leq 2 \text{ mg/L}$.
Unionized ammonia (μg/L)		Ż	Not reported		EPA recommends that unionized ammonia in the dilution water be $\leq 1 \ \mu g/L$.
Residual chlorine (µg∕L)		Ż	Not reported		EPA recommends that residual chlorine in dilution water be <10 μg/L.

Version: 22 September 2011

Page 19 of 55

EPA MRID Number 48671311

Parameter	Minimum	Maximum	Mean	Measurement Interval	Guideline Recommendations
				Weekly (one replicate	General recommendations for frequency of
				test chamber of the	measurements: EPA recommends that
				negative control and	temperature, pH, and dissolved oxygen be
				the highest	measured in all test tanks at least weekly and
				concentration	that hardness and alkalinity be measured in
Specific conductance	281	387	341.5	treatment group, with	controls and in one tank at the highest test
				measurements	concentration at least weekly. In addition,
				typically alternating	continuous temperature monitoring of at least
				between replicates at	one tank is encouraged.
				each measurement	
				interval)	

a.i./L treatment group. Temperature measurements in the test chambers ranged from 28.6 to 29.1°C. It was determined that the temperature probe wiring connecting the heating plates to the temperature control unit had become loose. After the probe connection was corrected, temperature in these tanks returned to target temperature and ranged from 24.4 to 24.7°C. This temperature variation was of short duration (<24 hours), and did not have any adverse impact on the On Day 7, temperature measurements were out of range in replicates B, C and D of the 1.2 mg a.i./L treatment group and in replicates A, b and C of the 6.2 mg study.

Version: 22 September 2011

Page 20 of 55

EPA MRID Number 48671311

D. Study Design and Additional Experimental Conditions

(olde < /if di+ic ç ÷ ţ ÷ ij. ň Table 6

Table 6: Range-Finding Study Conditions (if Applicable).	nditions (if Applicable).		
Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Was a range-finder conducted?	Yes		<i>EPA recommends conducting a range-finder if</i> <i>96-hour LC₅₀ data for the fathead minnow are</i> <i>unavailable.</i>
If yes, what was the method for determining the highest test concentration in the range-finder? Species: Life stage:	1/3 of the reported LC ₅₀ from a previous acute toxicity study. <i>Pimephales promelas</i> Not specified	In a 96-hour acute toxicity test, a nominal glyphosate concentration of 87 mg a.i./L resulted in 100% mortality while a nominal concentration of 81 mg a.i./L resulted in no mortality.	EPA recommends that the highest test concentration be selected based on toxicity data for other fish studies or species, if available. Otherwise, either the solubility limit of the test compound or 100 mg/L (whichever is lower) is appropriate. EPA recommends that range-finding tests be performed with fish of similar age and size to those that would be utilized in the test.
Test duration:	14 days	Reference acute toxicity study was conducted for 96 hours.	EPA recommends a 96-hour exposure.

Version: 22 September 2011 Page 21 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Additional details:	The range-finding study	Test solutions in the mixing and test	EPA recommends conducting a range-finder with
	was conducted with	chambers appeared clear and colorless	five test concentrations plus a control (six total
	nominal concentrations of	throughout the rangefinder. Analytical	treatment levels), with four females and two
	1.9, 3.8, 7.5, 15, and 30	recoveries ranged from 92 to 128% of	males per exposure tank (36 fish total). The
	mg a.i./L. One incidental	nominal on Day 14.	number of mortalities that occur may be used to
	mortality occurred at 15		develop a concentration-response curve.
	mg a.i./L with no other		Based upon the results, the highest concentration
	mortalities occurring in		that does not result in increased mortality or
	any control or treatment		signs of overt morbidity compared to controls, or
	group. No signs of toxicity		$1/3$ the derived 96-hr LC $_{50}$, may be selected as
	were observed in any		the highest exposure concentration in the 21-day
	control or treatment group		test.
	throughout the duration of		
	the range-finder.		

Table 7: Definitive Study Conditions.

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Test duration:	21 days		EPA recommends that the duration of the
			definitive test be 21 days.

Version: 22 September 2011

Page 22 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Method for selecting the highest test concentration in the definitive test:	Range-finder		EPA recommends that the highest test concentration is either the solubility limit of the test compound, 100 mg/L, or demonstrates adequate evidence of toxicity (e.g., $1/3$ the 96-hour LC ₅₀), whichever concentration is lowest.
Reference study citation (if applicable):	EG & G Bionomics. 1975. Chronic toxicity of glyphosate to the fathead minnow (<i>Pimephales</i> <i>promelas Rafinesque</i>). Monsanto unpublished study BN-75-129. MRID 108171.		
Separation of test concentrations:	0.2		EPA suggests that a concentration separation of between 0.33 (or three-fold) and 0.1 (or ten- fold) is scientifically acceptable ['] .
Number of test concentrations:	ſ		EPA recommends a minimum of 3 concentrations and a control, plus solvent control if appropriate.

Version: 22 September 2011

Page 23 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Are nominal concentrations adjusted for purity?	Yes		
Indicate the type of values presented for measured concentrations:	Mean-measured		
Limit of quantification (LOQ):	0.0300 mg a.i./L		EPA recommends that for chemical test concentrations below the LOQ, analyses be conducted on the stock solutions.
Level of detection (LOD):	Not reported		
Frequency of measurement:	Samples were collected for analysis on Days 0, 7, 14, and 21.		It is recommended that test item concentration be measured prior to the addition of fish in all tanks and at least weekly thereafter in two replicates per treatment level.

Version: 22 September 2011

Page 24 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Was the randomized complete block design used?	Unsure	Blocks of breeding groups were set up based on pre-exposure fecundity rates with one replicate for each treatment including controls included in each block. However, it does not appear that within the blocks, that	EPA recommends that all fish be randomly assigned to tanks during pre-exposure. Tanks are then ranked according to pre-exposure fecundity, and the tanks with the highest fecundity are randomly assigned to a definitive
		the treatment replicates were randomized as the same pattern was used for all blocks.	test treatment and block first. Each block contains one replicate of each treatment, including controls.
Number of replicates in control:	4		EPA recommends 4 replicates.
Number of replicates in solvent control (if applicable):	NA		EPA recommends the use of a concurrent solvent control when a solubilizing agent is used. EPA recommends 4 replicates.
Number of replicates per test item treatment level:	4		EPA recommends 4 replicates.
Number of male fish per replicate at test initiation:	2	In the 33 mg a.i./L replicate D, there were 3 males and 3 males due to a mis-sexed fish at pre-exposure allocation.	EPA recommends 2 males per replicate.

Version: 22 September 2011

Page 25 of 55

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Number of female fish per replicate at test initiation:	4		EPA recommends 4 females per replicate.
Was a solvent used?	No		
Solvent type (if applicable):	NA		
Maximum solvent concentration (if applicable):	NA		EPA recommends that the solvent not exceed $0.02 \text{ m}/L^3$. OECD recommends that solvent
			have no effect on survival nor produce any other
			adverse effects and that concentration not be
			greater than 0.1 ml/L ⁴ .
Was a positive control used?	No		
Positive control (if applicable):	NA		
Positive control concentration(s) (if applicable):	NA		
	_		

Hutchinson TH, Shillabeer N, Winter MJ, Pickford DB (2006). Acute and chronic effects of carrier solvents in aquatic organisms: A critical review. Review. Aquatic Toxicology, 76, pp.69-92. OECD (2000). Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. Environmental Health and Safety Publications. Series on Testing and Assessment. No. 23. Paris, France.

4

m

Page 26 of 55

Version: 22 September 2011

EPA MRID Number 48671311

Parameter	Value(s)	Details or Remarks	Guideline Recommendations
Photoperiod:	16 hrs light : 8 hrs dark	A 30-minute transition period of low light intensity was provided between light and dark phases to avoid sudden changes in lighting.	EPA recommends photoperiod 16:8 (light:dark).
Light intensity at water's surface:	450-1976 lux	Fluorescent light bulbs that emit wavelengths similar to natural sunlight	EPA recommends light intensity 540 – 1080 lux (at water's surface).
Additional details:	ИА	The stock solution was clear and colorless in appearance with no visible precipitates. Test solutions in the mixing chambers and test chambers were reported as clear and colorless with no evidence of precipitation.	

Page 27 of 55 Version: 22 September 2011

EPA MRID Number 48671311

be maintained at a coefficient of variation (CV) EPA recommends that test item concentrations Guideline Recommendations ≤20%. Details or Remarks ± 0.004 ± 0.022 ± 0.029 ± 0.148 AA AA Mean CV (%) 9.0 7.8 9.9 2.4 2.3 ٩ Concentration (mg a.i./L) Measured <LOQ 0.046 0.23 6.2 1.2 33 Concentration (mg a.i./L) Nominal 0.048 0.00 0.24 6.0 1.2 30 Negative Control Treatment ID Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5

Table 8: Summary of Treatment Concentrations in the Fish Short-Term Reproduction Assay with Glyphosate.

Abbreviations: ^{cv} Coefficient of variation.

LOQ=0.0300 mg a.i./L

Page 28 of 55 Version: 22 September 2011

EPA MRID Number 48671311

E. Observations

Survival, fecundity, fertility success, and clinical signs were observed daily. On Day 21 total length, wet weight, secondary sex characteristics, plasma concentrations of vitellogenin (VTG), gonadal sex, GSI, and tubercle scores were evaluation Biological Endpoints:

Were raw (individual) data provided? Yes

vitellogenin, and plasma sex steroids (testosterone and 178-estradiol, if measured). Gonado-somatic index (GSI) is calculated using a ratio of gonad weight EPA recommends that observations of survival, fecundity, fertilization success, secondary sex characteristics, and other clinical signs occur at least daily. At test termination (Day 21), additional observations include body weight and length, nuptial tubercle score, gonadal staging and histopathology, plasma to body weight (gonad weight to the nearest 0.1 mg / body weight in mg x 100) at test termination.

Clinical signs of overt toxicity may include (but are not limited to) hemorrhage, cessation of feeding, and other abnormal behavior.

Version: 22 September 2011

Page 29 of 55

EPA MRID Number 48671311

- II. RESULTS AND DISCUSSION
- A. Results

By test termination, a single incidental male mortality was observed in the mean-measured 1.2 mg a.i./L treatment group (Table 9). Male survival was 100% in the remaining treatment groups, and no female mortalities were observed. Overall survival was 100% in the negative control, 0.046, 0.23, 6.2 and 33 mg a.i./L treatment groups and was 95.8% in the 1.2 mg a.i./L treatment group.

Version: 22 September 2011

Page 30 of 55

EPA MRID Number 48671311

Females Surviving 16 16 16 16 16 15 # 16 16 16 16 16 15¹ ⊆ % Survival 87.5 100 100 100 8 8 Males # Surviving ∞ ∞ ∞ ი \sim ∞ ⊆ ∞ ∞ ∞ ∞ 6 ∞ Negative Control (<LOQ) Treatment (mg a.i./L) [mean-measured] 0.046 0.23 6.2 1.2 33

% Survival

100

100

100

8

8

8

Table 9: Adult Fish Survival in Fathead Minnow (Pimephales promelas).

In replicate D of this treatment, there were 3 males and 3 females instead of the recommended 2 and 4 due to a mis-sexing error.

LOQ=0.0300 mg a.i./L

measured 0.23 mg a.i./L treatment group (Table 10). Total length ranged from 52 mm in the highest concentration to 55 mm in the negative control and mean-measured 0.23 mg a.i./L treatment group. Mean female wet weight ranged from 1.04 to 1.14 g in the control and treatment After 21 days of exposure, male wet weight ranged from 2.05 g in the mean-measured 33 mg a.i./L treatment group to 2.28 g in the meangroups at test termination, and mean total length ranged from 45 to 46 mm (Table 10).

Version: 22 September 2011

Page 31 of 55

EPA MRID Number 48671311

Table 10: Size at Test Termination in Fathead Minnow (Pimephales promelas).

			Body	Body Weight					Len	Length		
Ireatment (mg a.i./L)		Males			Females			Males			Females	
[mean-measured]	ц	Mean (g)	ŪS∓	E	Mean (g)	±SD	Ľ	Mean (mm)	TSD	Ľ	Mean (mm)	±SD
Negative Control (<loq)< td=""><td>4</td><td>2.20</td><td>0.462</td><td>4</td><td>1.14</td><td>0.047</td><td>4</td><td>55</td><td>2.8</td><td>4</td><td>46</td><td>0.7</td></loq)<>	4	2.20	0.462	4	1.14	0.047	4	55	2.8	4	46	0.7
0.046	4	2.17	0.343	4	1.10	0.053	4	53	1.8	4	46	0.9
0.23	4	2.28	0.397	4	1.04	0.070	4	55	3.5	4	45	1.1
1.2	4	2.20	0.186	4	1.12	0.053	4	54	1.6	4	46	0.2
6.2	4	2.14	0.273	4	1.07	0.108	4	53	2.3	4	45	1.3
33	4	2.04'	0.208	4	1.13	0.091	4	521	1.0	4	46	0.8
Abbraviations: ^{SD} Standard deviation	toinot pr	tion										

Abbreviations: ^{SD} Standard deviation.

-

In replicate D of this treatment, there were 3 males instead of the recommended 2 due to a mis-sexing error. If this fish is removed from analysis of body weight and length, the treatment means for length are the same as when retained and are similar for body weight (2.05 when retained and 2.04 when removed). The values in this table reflect data excluding the mis-sexed male.

LOQ=0.0300 mg a.i./L

Page 32 of 55 Version: 22 September 2011 Mean fecundity ranged from 22.6 to 29.3 eggs/reproductive female/day in the mean-measured 0.23 and 0.046 mg a.i./L treatment groups, respectively (Table 11). Mean fertilization success ranged from 96.0% in the mean-measured 1.2 mg a.i./L treatment group to 98.4% in the mean-measured 0.23 mg a.i./L treatment group.

Treatment (mg a.i./L)	Fecu	ndity ¹	Fertilization \$	Success (%) ²
[mean-measured]	Mean	± SD	Mean	± SD
Negative Control (<loq)< td=""><td>23.5</td><td>0.33</td><td>97.3</td><td>0.36</td></loq)<>	23.5	0.33	97.3	0.36
0.046	29.3	5.3	97.6	1.0
0.23	22.6	5.4	98.4	1.4
1.2	24.9	0.89	96.0	2.7
6.2	28.1	6.4	98.1	1.1
33	23.6	2.2	96.7	2.0

Table 11: Fecundity and Fertilization Success in Fathead Minnow (Pimephales promelas).

¹ Fecundity is calculated as the number of eggs per surviving female per reproductive day per replicate.

 2 Fertilization success (%) is calculated as the number of embryos divided by the number of eggs, multiplied by 100. LOQ=0.0300 mg a.i./L

The reviewer-calculated treatment medians based on replicate medians (Table 12). Male median treatment tubercle scores ranged from 15 to 19. No nuptial tubercles were observed for females.

Treatment (mar e i //)	Ма	les	Fem	ales
Treatment (mg a.i./L) [mean-measured]	n	Median Tubercle Score	n	Median Tubercle Score
Negative Control (<loq)< td=""><td>4</td><td>17</td><td>4</td><td>0</td></loq)<>	4	17	4	0
0.046	4	19	4	0
0.23	4	16	4	0
1.2	4	19	4	0
6.2	4	17	4	0
33	4	15 ¹	4	0

Table 12: Nuptial Tubercle Score in Fathead Minnow (Pimephales promelas).

¹ In replicate D of this treatment there were 3 males instead of the recommended 2 due to a mis-sexing error. If this fish is removed from analysis of tubercle score, the treatment medians are the same as when retained.
LOQ=0.0300 mg a.i./L

Mean GSI ranged from 1.11 to 1.52% in males and from 13.1 to 15.8% in females (Table 13).

Treatment (mg a.i./L) [mean-measured]	Males			Females			
	n	Mean GSI ¹ (%)	±SD	n	Mean GSI ¹ (%)	±SD	
Negative Control (<loq)< td=""><td>4</td><td>1.47</td><td>0.198</td><td>4</td><td>14.7</td><td>3.27</td></loq)<>	4	1.47	0.198	4	14.7	3.27	
0.046	4	1.11	0.212	4	14.4	2.05	
0.23	4	1.42	0.371	4	13.1	1.67	
1.2	4	1.32	0.081	4	14.0	2.58	
6.2	4	1.36	0.335	4	15.5	2.05	
33	4	1.52 ²	0.330	4	15.8	3.14	

Table 13: Gonado-Somatic Index (GSI) in Fathead Minnow (Pimephales promelas).

¹ Gonado-somatic index (%) is calculated as gonad weight (to the nearest 0.1 mg) / body weight (mg) x 100.

² In replicate D of this treatment there were 3 males instead of the recommended 2 due to a mis-sexing error. If this fish is removed from analysis of GSI, the treatment means are very similar as when retained (1.51 when retained vs. 1.52 when removed). The values in this table reflect data excluding the mis-sexed male.

LOQ=0.0300 mg a.i./L

Median gonadal stages were 2.0 in males from 2 to 3 in females (Table 14). There were no apparent treatment-related trends in gonadal staging.

Treatment (mg a.i./L)	Ма	les	Females			
[mean-measured]	n Median Stage ¹		n	Median Stage ²		
Negative Control (<loq)< td=""><td>8</td><td>2</td><td>16</td><td>3</td></loq)<>	8	2	16	3		
0.048	8	2	16	3		
0.24	8	2	16	3		
1.2	7	2	15	2		
6.2	8	2	16	3		
33	9	3 ³	15	3		

Table 14: Gonadal Staging in Fathead Minnow (*Pimephales promelas*).

¹ The guideline recommends the following gonadal staging scale for male fathead minnow: O=undeveloped, 1=early spermatogenic, 2=mid-spermatogenic, 3=late spermatogenic, 4=spent.

² The guideline recommends the following gonadal staging scale for female fathead minnow: O=undeveloped, 1=early development, 2=mid-development, 3=late development, 4=late development/hydrated, 5=post-ovulatory.

³ In replicate D of this treatment there were 3 males instead of the recommended 2 due to a mis-sexing error. If this fish is removed from median treatment analysis, the treatment median are very similar as when retained (2.5 (rounded to 3) when all three analyzed vs. 2.25 (rounded to 2) when mis-sexed removed). As the evaluation of this endpoint relies heavily on the pathologists report, this table reflects all three fish.

LOQ=0.0300 mg a.i./L

The gonads from a total of 48 males and 94 females were studied. Because the mis-sexed male in replicate D of the mean-measured 33 mg a.i./L treatment group was not explicitly identified, it is included in the tables (*i.e.*, n = 9 males for the 33 mg a.i./L treatment group). Testes and ovaries from the five treatment groups showed no changes in gonadal staging or increased abnormalities when compared with the negative control (Tables 15-18). Minimal and mild granulomatous inflammation was found in male gonads from the mean-measured 0.046 mg a.i./L treatment group, though these observations were not considered to be treatment-related.

Mild increased oocyte atresia in females was observed in the negative control, low, and mid-concentration treatments, and a single incident of moderate increased oocyte atresia was noted in the high-concentration treatment group (Table 17). Moderate to marked increases in mature oocytes were observed in two, five, and one females in the negative control and mean-measured 1.2 and 33 mg a.i./L treatment groups, respectively. Mild granulomatous inflammation was noted in a single female in the negative control and mean-measured 6.2 mg a.i./L treatment group (Table 18). No other female gonadal histopathological observations were made.

	Diagnostic Observations ¹								
Treatment (mg a.i./L) [mean-measured]	Severity	Increased Proportion of Spermatogonia		Presence of Testis-Ova		Increased Testicular Degeneration		Interstitial Cell Hypertrophy/ Hyperplasia	
		n	Incidence	n	Incidence	n	Incidence	n	Incidence
Negative Control	0	8	8	8	8	8	8	8	8
(<loq)< td=""><td>1</td><td>8</td><td>0</td><td>8</td><td>0</td><td>8</td><td>0</td><td>8</td><td>0</td></loq)<>	1	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0
0.046	0	8	8	8	8	8	8	8	8
	1	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0
0.23	0	8	8	8	8	8	8	8	8
	1	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0

Table 15: Gonadal Histopathology in Male Fathead Minnow (Pimephales promelas).

Page 37 of 55 Version: 22 September 2011

EPA MRID Number 48671311

				Diag	nostic Observ	vations ¹			
Treatment (mg a.i./L) [mean-measured]	Severity	Pro	creased portion of matogonia		esence of estis-Ova	т	ncreased esticular generation	Hy	erstitial Cell pertrophy/ vperplasia
		n	Incidence	n	Incidence	n	Incidence	n	Incidence
1.2	0	7	7	7	7	7	7	7	7
	1	7	0	7	0	7	0	7	0
	2	7	0	7	0	7	0	7	0
	3	7	0	7	0	7	0	7	0
	4	7 0 7 0 7 0	7	0					
6.2	0	8	8	8	8	8	8	8	8
	1	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0
33	0	8	8	8	8	8	8	8	8
	1	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0

Gonadal histopathology diagnostic observations are graded 0 - 4 based on severity: 0=Not remarkable, 1=Minimal,

2=Mild, 3=Moderate, 4=Severe. See Appendix E of the test guideline for reference.

LOQ=0.0300 mg a.i./L

1

EPA MRID Number 48671311

Table 16: Additional Gonadal Histopathology Observations in Male Fathead Minnow (Pimephales promelas).

					Additional Dia	agnostic	Additional Diagnostic Observations				
Treatment (mg a.i./L)		Prop	Decreased Proportion of	Increa	Increased Vascular or Interstitial	Asyr	Asynchronous Gonad	Altered Spei	Altered Proportions of Spermatocytes or	Grar	Granulomatous
[mean-measured]	Severity	Sper	Spermatogonia	Proteir	Proteinaceous Fluid	Dev	Development	0)	Spermatids	Infl	Inflammation
		۲	Incidence	Ľ	Incidence	c	Incidence	c	Incidence	۲	Incidence
Negative Control (<loq)< td=""><td>0</td><td>∞</td><td>∞</td><td>∞</td><td>∞</td><td>∞</td><td>∞</td><td>∞</td><td>∞</td><td>8</td><td>∞</td></loq)<>	0	∞	∞	∞	∞	∞	∞	∞	∞	8	∞
	1	8	0	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0	8	0
0.046	0	8	8	8	8	8	8	8	8	8	4
	1	8	0	8	0	8	0	8	0	8	1
	2	8	0	8	0	8	0	8	0	8	3
	3	8	0	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	8	0	8	0

Version: 22 September 2011

Page 39 of 55

EPA MRID Number 48671311

					Additional Di	agnostic	Additional Diagnostic Observations ¹				
Treatment (mg a.i./L) [mean-measured]	Severity	Dro Spei	Decreased Proportion of Spermatogonia	Increa or Protein	Increased Vascular or Interstitial Proteinaceous Fluid	Asy	Asynchronous Gonad Development	Alterec Spei	Altered Proportions of Spermatocytes or Spermatids	Grar Infi	Granulomatous Inflammation
		c	Incidence	c	Incidence	с	Incidence	c	Incidence	۲	Incidence
0.23	0	∞	ø	∞	∞	8	ø	∞	∞	∞	∞
<u>.</u>	-	8	0	∞	0	8	0	∞	0	∞	0
<u>.</u>	2	∞	0	∞	0	8	0	∞	0	∞	0
<u>.</u>	£	∞	0	∞	0	8	0	∞	0	∞	0
	4	8	0	8	0	8	0	8	0	8	0
1.2	0	2	2	2	7	7	2	7	2	7	2
	1	2	0	2	0	2	0	7	0	7	0
<u>.</u>	2	2	0	2	0	2	0	7	0	2	0
	3	2	0	2	0	7	0	7	0	7	0
	4	2	0	2	0	7	0	7	0	7	0
6.2	0	8	8	8	8	8	8	8	8	8	8
	1	8	0	8	0	8	0	8	0	8	0
	2	8	0	8	0	8	0	8	0	8	0
	3	8	0	8	0	8	0	8	0	8	0
	4	8	0	8	0	8	0	∞	0	8	0

Version: 22 September 2011

Page 40 of 55

EPA MRID Number 48671311

					Additional Di	agnostic	Additional Diagnostic Observations				
Treatment		Ď	Decreased	Increa	Increased Vascular	Asy	Asynchronous	Altered	Altered Proportions of	Grar	Granulomatous
(mg a.ı./L) [mean-measured]	Severity	Pro Spei	Proportion of Spermatogonia	or Proteir	or Interstitial Proteinaceous Fluid	De	Gonad Development	SperS	Spermatocytes or Spermatids	Infl	Inflammation
		ч	Incidence	Ц	Incidence	и	Incidence	u	Incidence	и	Incidence
33	0	8	8	8	8	8	8	8	8	6	6
	1	8	0	8	0	8	0	8	0	6	0
	2	8	0	8	0	8	0	8	0	6	0
	3	8	0	8	0	8	0	8	0	6	0
	4	8	0	8	0	8	0	∞	0	6	0
1 Gonadal histonathology diagnostic observations are	apoetic observat	ione are		haed or	Severity. O-No	temar te	Minimi Minimi	lind - c lo	arodod 0 - A horod on coverity. 0-Net romorkahlo 1-Minimal 2-Mild 2-Mederato A-Covers See Amondiy E of	- 001000	000

Gonadal histopathology diagnostic observations are graded 0 - 4 based on severity: 0=Not remarkable, 1=Minimal, 2=Mild, 3=Moderate, 4=Severe. See Appendix E of

the test guideline for reference.

LOQ=0.0300 mg a.i./L

Version: 22 September 2011

Page 41 of 55

			Diagno	ostic Obs	ervations ¹		
Treatment (mg a.i./L) [mean-measured]	Severity		ased Oocyte Atresia	н	follicular Cell yperplasia/ ypertrophy		creased Yolk Formation
		n	Incidence	n	Incidence	n	Incidence
Negative Control (<loq)< td=""><td>0</td><td>16</td><td>15</td><td>16</td><td>16</td><td>16</td><td>16</td></loq)<>	0	16	15	16	16	16	16
	1	16	0	16	0	16	0
	2	16	1	16	0	16	0
	3	16	0	16	0	16	0
	4	16	0	16	0	16	0
0.046	0	16	15	16	16	16	16
	1	16	0	16	0	16	0
	2	16	1	16	0	16	0
	3	16	0	16	0	16	0
	4	16	0	16	0	16	0
0.23	0	16	16	16	16	16	16
	1	16	0	16	0	16	0
	2	16	0	16	0	16	0
	3	16	0	16	0	16	0
	4	16	0	16	0	16	0
1.2	0	15	13	15	15	15	15
	1	15	0	15	0	15	0
	2	15	2	15	0	15	0
	3	15	0	15	0	15	0
	4	15	0	15	0	15	0

Table 17: Gonadal Histopathology in Female Fathead Minnow (Pimephales promelas).

EPA MRID Number 48671311

			Diagno	ostic Obs	ervations ¹		
Treatment (mg a.i./L) [mean-measured]	Severity		ased Oocyte Atresia	н	follicular Cell yperplasia/ ypertrophy		creased Yolk Formation
		n	Incidence	n	Incidence	n	Incidence
6.2	0	16	16	16	16	16	16
	1	16	0	16	0	16	0
	2	16	0	16	0	16	0
	3	16	0	16	0	16	0
	4	16	0	16	0	16	0
33	0	15	14	15	15	15	15
	1	15	0	15	0	15	0
	2	15	0	15	0	15	0
	3	15	1	15	0	15	0
	4	15	0	15	0	15	0

Gonadal histopathology diagnostic observations are graded 0 - 4 based on severity: 0=Not remarkable, 1=Minimal,

2=Mild, 3=Moderate, 4=Severe. See Appendix E of the test guideline for reference.

LOQ=0.0300 mg a.i./L

1

EPA MRID Number 48671311

Table 18: Additional Gonadal Histopathology Observations in Female Fathead Minnow (Pimephales promelas).

Version: 22 September 2011

Page 44 of 55

EPA MRID Number 48671311

	Increased Mature Oocytes	Incidence	16	0	0	0	0	10	0	0	l	4	91	0	0	0	0
	Incre	ч	16	16	16	16	16	15	15	15	15	15	16	16	16	16	16
	Decreased Post- Ovulatory Follicles	Incidence	16	0	0	0	0	15	0	0	0	0	16	0	0	0	0
	Decr	ч	16	16	16	16	16	15	15	15	15	15	16	16	16	16	16
Additional Diagnostic Observations ¹	Granulomatous Inflammation	Incidence	16	0	0	0	0	15	0	0	0	0	15	0	-	0	0
al Diagno	-P =	ч	16	16	16	16	16	15	15	15	15	15	16	16	16	16	16
Addition	Egg Debris in Oviduct	Incidence	16	0	0	0	0	15	0	0	0	0	16	0	0	0	0
	Egg	ч	16	16	16	16	16	15	15	15	15	15	16	16	16	16	16
	Interstitial Fibrosis	Incidence	16	0	0	0	0	15	0	0	0	0	16	0	0	0	0
	Interst	u	16	16	16	16	16	15	15	15	15	15	16	16	16	16	16
	Severity		0	Ļ	2	3	4	0	L	2	3	4	0	L	2	3	4
Treatment	(mg a.i./L) [mean-	measured]	0.23					1.2					6.2				

Version: 22 September 2011

Page 45 of 55

EPA MRID Number 48671311

	-			Additions	al Diagno	Additional Diagnostic Observations				
Severity		Interstitial Fibrosis	Ē	Egg Debris in Oviduct	<u> </u>	Granulomatous Inflammation	Deci	Decreased Post- Ovulatory Follicles	Incre	Increased Mature Oocytes
	c	Incidence	c	Incidence	Ē	Incidence	۲	Incidence	c	Incidence
0	15	15	15	15	15	15	15	15	15	14
-	15	0	15	0	15	0	15	0	15	0
2	15	0	15	0	15	0	15	0	15	0
Υ	15	0	15	0	15	0	15	0	15	0
4	15	0	15	0	15	0	15	0	15	1

Gonadal histopathology diagnostic observations are graded 0 - 4 based on severity: 0=Not remarkable, 1= Minimal, 2=Mild, 3=Moderate, 4=Severe. See Appendix E of -

the test guideline for reference.

LOQ=0.0300 mg a.i./L

Page 46 of 55 Version: 22 September 2011

EPA MRID Number 48671311

Male plasma vitellogenin (VTG) concentrations ranged from 299 ng/mL in the mean-measured 33 mg a.i./L treatment group to 1340 ng/mL in the mean-measured 0.23 mg a.i./L treatment group (Table 19). Female VTG concentrations ranged from 1442000 ng/mL in the mean-measured 6.2 mg a.i./L treatment group to 3191000 ng/mL in the negative control.

			Plasma Vite	ellogenin (VT	G)	
Treatment (mg a.i./L)		Males			Females	
[mean-measured]	n	Mean (ng/mL plasma)	±SD	n	Mean (ng/mL plasma)	±SD
Negative Control (<loq)< td=""><td colspan="2"></td><td>4</td><td>3191000</td><td>1170000</td></loq)<>			4	3191000	1170000	
0.046	4	774	310	4	2124000	807000
0.23	4	1340	2070	4	2226000	624000
1.2	4	752	1240	4	2195000	403000
6.2	4	385	367	4	1442000	550000
33	4	299 ¹	231	4	2142000	356000

Table 19: Plasma Vitellogenin in Fathead Minnow (Pimephales promelas).

Abbreviations: ^{SD} Standard deviation.

¹ In replicate D of this treatment there were 3 males instead of the recommended 2 due to a mis-sexing error. If this fish is removed from analysis of VTG, the treatment means are very similar as when retained (327 when retained vs. 299 when mis-sexed removed). The values in this table reflect data excluding the mis-sexed male.
LOQ=0.0300 mg a.i./L

EPA MRID Number 48671311

No plasma sex steroids were measured (Table 20).

			Plasma Testosterone (T)	tosterone	(E)			PI	Plasma 17β-estradiol (E2)	estradiol (E2)	
Treatment		Males			Females			Males			Females	
(mg a.i./L) [mean-measured]	c	Mean (ng/mL plasma)	±SD	E	Mean (ng/mL plasma)	tSD	c	Mean (ng/mL plasma)	±SD	c	Mean (ng/mL plasma)	±SD
Negative Control (<loq)< td=""><td>4</td><td>QN</td><td>QN</td><td>4</td><td>ND</td><td>QN</td><td>4</td><td>QN</td><td>QN</td><td>4</td><td>QN</td><td>QN</td></loq)<>	4	QN	QN	4	ND	QN	4	QN	QN	4	QN	QN
0.046	4	ΠN	ND	4	ΠN	ND	4	ND	ΠN	4	ND	ND
0.23	4	DN	ND	4	ND	ND	4	ND	ND	4	ND	ND
1.2	4	DN	ND	4	ND	ND	4	ND	ND	4	ND	ND
6.2	4	DN	ND	4	ND	ND	4	ND	ND	4	ND	ND
33	4	DN	ŊŊ	4	ND	ND	4	ND	ND	4	ND	ND

Table 20: Plasma Sex Steroids in Fathead Minnow (Pimephales promelas). Not Measured.

Abbreviations: ND Not determined. ^{SD} Standard deviation.

LOQ=0.0300 mg a.i./L

Version: 22 September 2011

Page 48 of 55

EPA MRID Number 48671311

No secondary sex characteristics or clinical signs were observed in any males or females in the control or treatment groups (Table 21). All fish reported as normal during exposure.

	Second	ary Sex Characte	Secondary Sex Characteristics and Clinical Signs		
Males			Females		
Туре	ч	Incidence	Type	u	Incidence
None	∞	1	None	16	1
None	8		None	16	ł
None	8		None	16	1
None	2		None	16	1
None	8		None	16	
None	<u>б</u>	:	None	15	:

Table 21: Secondary Sex Characteristics and Clinical Signs in Fathead Minnow (Pimephales promelas).

LOQ=0.0300 mg a.i./L

Version: 22 September 2011

Page 49 of 55

B. Study Author's Analysis and Conclusions

Analyses were performed to evaluate differences between treatment and control groups for each of the following endpoints: survival, wet weight, total length, fecundity, fertility, GSI, VTG concentration, tubercle score, gonad developmental stage, and incidence and severity of gonad abnormalities.

Measurements of VTG are inherently variable, and boxplots of log transformed VTG values were used to identify potential outliers (Tukey's method) that might need special handling in the analyses. No outliers were excluded from analyses in this study.

Unless otherwise noted, replicate test chambers were used as the unit of statistical analysis. Males and females were analyzed separately for each endpoint when appropriate. Endpoints were first evaluated for monotonicity. Since the responses for all endpoints except male tubercle scores appeared to be monotonic, a step-down Jonckheere-Terpstra trend test was used to evaluate possible trends in the ranks of replicate means to determine concentration responsive trends among the treatment groups. Dunnett's test was used to evaluate male tubercle scores.

Survival and histopathology severity scores and stages were not amenable to the statistical methods used for analysis of other endpoints. In particular, the most suitable unit of statistical analysis for these endpoints was the individual animal. Therefore, survival was analyzed using Fisher's Exact test, and histopathology severity scores and stages of individuals were analyzed using step-down Jonckheere-Terpstra trend tests.

Statistical tests used to evaluate treatment effects were performed at confidence level of α =0.05 with SAS software.

There were no apparent effects on survival, growth, reproduction, secondary sex characteristics, GSI, VTG, or gonad histopathology in male or female fish exposed to glyphosate for 21 days up to a concentration of 33 mg a.i./L. Based on these endpoints, glyphosate does not appear to impact the

Page 50 of 55 Version: 22 September 2011

function of the hypothalamus-pituitary-gonadal (HPG) endocrine axis in *Pimephales promelas* under conditions and concentrations employed in the current test.

C. Reviewer's Analysis and Conclusions

Statistical Methods: A single male mortality occurred and was not considered to be treatment-related. Therefore, survival was not statistically analyzed. No endpoint exhibited a monotonic trend, and all endpoints were tested for homogeneity of variance and normality using Bartlett's Test (α =0.01) and the Shaprio-Wilks Test (α =0.01), respectively. Female median nuptial tubercle score, male median tubercle score, and male mean VTG concentration failed both tests and were analyzed using the Mann-Whitney U Two-Sample test. Fecundity was normally distributed but had unequal variance and was analyzed using the Dunnett T3 Multiple Comparison Test. All remaining endpoints were normally distributed with equal variance and were analyzed using the Dunnett Multiple Comparison Test.

Unless otherwise indicated, effects were considered statistically significant at p<0.05. Analyses were completed using CETIS.

Conclusions:

Female VTG concentrations were significantly reduced 55% at the 6.2 mg a.i./L treatment concentration. No other significant effects were observed in any treatment group relative to the negative control.

EPA MRID Number 48671311

Table 22: Reproductive and HPG Endpoints^{1,2} for Male Fathead Minnow (*Pimephales promelas*) in the FSTRA with Glyphosate.

		enin.	^{VTG} Vitellog	Testosterone.	applicable. [⊤]	y. ^{NA} Not a	$^{\text{Histo}}$ Histopathology. $^{\text{NA}}$ Not applicable. T Testosterone. $^{\text{VTG}}$ Vitellogenin.	natic Index.	Gonado-Sor	stradiol. ^{GSI}	nce. ^{E2} 17β-e	Abbreviations: ^{Diff.} Difference. ^{E2} 17 β -estradiol. ^{GSI} Gonado-Somatic Index.
	A	NA	A	NA	Mann-Whitney	-unann-	NA	Dunnett	Dur	/hitney	Mann-Whitney	Statistical Test
A	NA	NA	NA	NA	0.69	-70.4	No	1.0	2.89	0.86	15	33
∢	NA	NA	NA	NA	0.69	-61.9	No	0.96	-7.82	1.0	17	6.2
∢	NA	NA	NA	NA	1.0	-25.7	No	0.91	-9.86	60.0	19	1.2
∢	NA	NA	NA	NA	0.89	32.0	No	1.0	-3.4	1.0	16	0.23
4	NA	NA	NA	NA	1.0	-23.5	No	0.26	-24.8	0.17	19	0.046
4	NA	NA	NA	NA	NA	AN	No	NA	NA	NA	17	Negative Control (<loq)< td=""></loq)<>
_	d	% Diff.	d	% Diff.	d	% Diff.	Effect? (Yes/No)	d	% Diff.	d	Median	(III) a.r./L) [mean-measured]
	ia E2	Plasma E2	na T	Plasma T	Plasma VTG	Plasn	Gonadal Staging and Histo.	GSI	5	Score	Tubercle Score	Treatment

Unless otherwise indicated, effects and percent (%) differences are reported based on comparison to the negative (clean water) control. Conclusions regarding histopathology may be heavily weighted by the expert opinion of a board-certified pathologist.

Unless otherwise specified, effects are considered statistically significant at p<0.05.

LOQ=0.0300 mg a.i./L

2

-

Version: 22 September 2011

Page 52 of 55

EPA MRID Number 48671311

Table 23: Reproductive and HPG Endpoints^{1,2} for Female Fathead Minnow (*Pimephales promelas*) in the FSTRA with Glyphosate.

	ı	:				(;	Gonadal Staging	i	(L	ā	ŀ	i	c L
Treatment	Fecundity	Alip	Fert. Success	nccess	I ubercle Score	Score	CSI	-	and Histo.	Plasma VIG	5	Plasma I	a	Plasma EZ	a EZ
(mg a.i./L) [mean-measured]	% Diff.	ď	% Diff.	d	Median	d	% Diff.	d	Effect? (Yes/No)	% Diff.	d	% Diff.	d	% Diff.	d
Negative Control (<loq)< td=""><td>AN</td><td>NA</td><td>AN</td><td>AN</td><td>0</td><td>NA</td><td>AN</td><td>NA</td><td>No</td><td>AN</td><td>NA</td><td>AN</td><td>NA</td><td>AN</td><td>AN</td></loq)<>	AN	NA	AN	AN	0	NA	AN	NA	No	AN	NA	AN	NA	AN	AN
0.046	24.8	0.34	0.33	1.0	0	1.0	-2.22	1.0	No	-33.5	0.16	AN	AN	NA	AN
0.23	-3.41	1.0	1.18	0.77	0	1.0	-10.8	0.84	No	-30.3	0.23	AN	AN	AN	NA
1.2	6.08	0.14	-1.36	0.67	0	1.0	-4.85	0.99	No	-31.3	0.21	AN	AN	NA	NA
6.2	19.6	0.62	0.87	0.91	0	1.0	5.38	0.99	No	-54.8	0.01	AN	AN	AN	NA
33	-0.53	1.0	-0.64	0.97	0	1.0	7.40	0.96	No	-32.9	0.17	AN	AN	AN	NA
Statistical Test	Dunnett T3	tt T3	Dun	Dunnett	Mann-Whitney	hitney	Dunnett	nett	ΝA	Dunnett	nett	NA	_	NA	-
Abbreviations: ^{Diff.} Difference. ^{E2} 17β-estradiol. ^{Fert.} Fertilization.	ference.	^{Ξ2} 17β-e	stradiol.	Fert. Fertili:		3onado-S	^{GSI} Gonado-Somatic Index.		Histo. Histopathology.	A Not app	licable.	^{NA} Not applicable. ^T Testosterone.		^{VTG} Vitellogenin.	lenin.

Unless otherwise indicated, effects and percent (%) differences are reported based on comparison to the negative (clean water) control. Conclusions regarding b or applice . VDV suppau 202

- histopathology may be heavily weighted by the expert opinion of a board-certified pathologist.
- Unless otherwise specified, effects are considered statistically significant at p<0.05.

LOQ=0.0300 mg a.i./L

2

*.*___

Version: 22 September 2011

Page 53 of 55

EPA MRID Number 48671311

Treatment		Body	Weight			Le	ength	
(mg a.i./L)	Ма	les	Fem	ales	Mal	es	Fer	nales
[mean-measured]	% Diff.	p	% Diff.	p	% Diff.	р	% Diff.	p
Negative Control (<loq)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq)<>								
0.046	-1.48	1.0	-3.08	0.94	-2.74	0.83	-0.41	1.0
0.23	3.41	1.0	-8.57	0.26	0.23	1.0	-2.44	0.30
1.2	-0.23	1.0	-1.32	1.0	-2.28	0.90	-1.31	0.80
6.2	-2.61	1.0	-5.93	0.58	-2.51	0.87	-1.62	0.65
33	-7.26	0.93	0.66	1.0	-5.25	0.31	-0.54	0.99
Statistical Test	Dun	nett	Dun	inett	Dunr	nett	Du	nnett

Table 24: Growth Endpoints^{1,2} in the Fish Short-Term Reproduction Assay (FSTRA) with Glyphosate.

Abbreviations: Diff. Difference.

¹ Unless otherwise indicated, percent (%) differences are reported based on comparison to the negative (clean water) control.

² Unless otherwise specified, effects are considered statistically significant at p<0.05.

LOQ=0.0300 mg a.i./L

E. Study Deficiencies

There was one deviation from the performance criteria: Temperature exceeded the recommended range $25\pm1^{\circ}$ C, for less than 24 hours on Day 7 when the maximum temperature reached 29.1°C (deviation occurred in replicates B, C, and D in 1.2 mg a.i./L and replicates A, B, and C in 6.2 mg a.i./L where temperatures ranged from 28.6 to 29.1°C). All fish were reported as normal throughout the test, and there was no mortality during this temperature deviation. This deviation did not have an impact on the interpretation of the results of this study.

F. Reviewer's Comments

The reviewer's results were slightly more conservative than those of the study authors in that the review detected a significant reduction in female VTG concentration at the mean-measured 6.2 mg a.i./L treatment level whereas the study authors found no differences. Therefore, the reviewer's results are reported in the Executive Summary of this DER.

Results from the periodic screening analysis of the dilution water indicated the presence of the following metals: calcium (34.9 mg/L), chloride (4.5 mg/L), fluoride (0.85 mg/L) magnesium (13.2 mg/L), potassium (7.00 mg/L), sodium (19.0 mg/L), and sulfate (5.7 mg/L). The TOC concentration during the 4-week period prior to the test was <1 mg/L, and no pesticides or organics were detected.

It is also noted that there were 3 males and 3 females (as oppose to recommended 2 males, 4 females) in replicate D of the 33 mg a.i./L treatment group due to misidentification during allocation at preexposure. Inclusion or exclusion of gender-specific data from this fish did not affect interpretation of the results in the study.

The in-life portion of the definitive toxicity was conducted from December 21, 2011 to January 11, 2012.

III. REFERENCES

EG & G Bionomics. 1975. Chronic toxicity of glyphosate to the fathead minnow (*Pimephales promelas Rafinesque*). Monsanto unpublished study BN-75-129. MRID 108171.

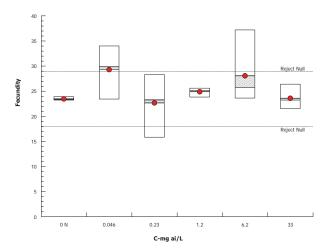
Tukey, J.W. 1977. Exploratory Data Analysis. Reading, MA. Addison-Wesley.

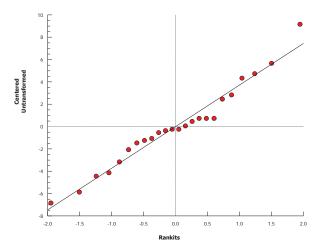
The SAS System for Windows. 1999-2001. Version 8.2. SAS Institute, Inc., Cary, North Carolina.

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	50 EDSP Fish S	hort-1	erm Repro	ducti	ion Assay	(FSTRA)					Wildlife In	ternational
Analysis ID: Analyzed:	16-0647-3496 22 Feb-13 10:3	7	Endpoint: Analysis:		,	ultiple Comparison		TIS Vers		CETISv Yes	1.8.7	
Batch ID:	09-5292-6152		Test Type:	ED	SP FSTR/	A Tier 1	An	alyst:				
Start Date:	21 Dec-11		Protocol:	OC	SPP 890.	1350 Tier I FSTRA	Dil	uent:	Well	Water		
Ending Date:	11 Jan-12		Species:	Pim	nephales p	romelas	Bri	ne:	Not A	pplicable		
Duration:	21d Oh		Source:	Osa	age Catfis	heries, Osage Beach, MI	Ag	e:	6 mo			
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOE	L	LOEL	TOEL	TU
Untransformed		NA	C <>	Т	NA	NA	23.5%	33		>33	NA	

Dunnett T3 Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	2.18	5	13.4	3	0.3425	CDF	Non-Significant Effect
	0.23	0.298	5	13.4	3	0.9985	CDF	Non-Significant Effect
	1.2	3.02	4.3	2.03	4	0.1429	CDF	Non-Significant Effect
	6.2	1.45	5	15.9	3	0.6192	CDF	Non-Significant Effect
	33	0.111	4.87	5.5	3	1.0000	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	uare	DF		F Stat	P-Value	Decision(α:5%)
Between	147.8537	29.57075		5		1.71	0.1827	Non-Significant Effect
Error	310.7525	17.26403		18				
Total	458.6063			23				


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	20	15.1	0.0013	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.971	0.884	0.6823	Normal Distribution

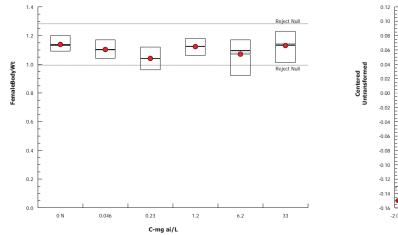
Fecundity Summary

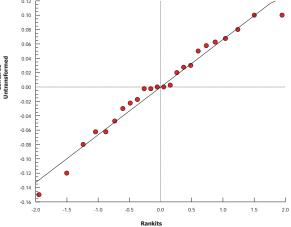
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	23.5	22.9	24	23.4	23.2	23.9	0.166	1.41%	0.0%
0.046		4	29.3	20.8	37.8	29.8	23.4	34	2.67	18.2%	-24.8%
0.23		4	22.6	14.1	31.2	23.3	15.8	28.3	2.68	23.7%	3.41%
1.2		4	24.9	23.5	26.3	25	23.8	25.6	0.442	3.56%	-6.08%
6.2		4	28.1	17.9	38.2	25.7	23.6	37.2	3.18	22.6%	-19.6%
33		4	23.6	20	27.1	23.2	21.5	26.4	1.12	9.48%	-0.53%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	50 EDSP Fish S	Short-1	Ferm Repro	duction /	Assay	(FSTRA)				Wildlife Ir	nternational
Analysis ID: Analyzed:	17-4558-5072 22 Feb-13 10:3	6	Endpoint: Analysis:	Female Parame	,	Vt ontrol vs Treatments		TIS Vers icial Res		/1.8.7	
Batch ID:	09-5292-6152		Test Type:	EDSP F	STRA	Tier 1	Ana	alyst:			
Start Date:	21 Dec-11		Protocol:	OCSPP	9890.1	350 Tier I FSTRA	Dilu	ient:	Well Water		
Ending Date:	11 Jan-12		Species:	Pimeph	ales p	romelas	Brii	ne:	Not Applicable	;	
Duration:	21d Oh		Source:	Osage	Catfisł	neries, Osage Beach, MI	Age):	6 mo		
Data Transfor	m	Zeta	Alt H	yp Tri	ials	Seed	PMSD	NOEI	LOEL	TOEL	TU
Untransformed		NA	C <>	T NA	ł	NA	12.7%	33	>33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Negative Control	0.046	0.671	2.76	0.144	6	0.9391	CDF	Non-Significant Effect
	0.23	1.87	2.76	0.144	6	0.2573	CDF	Non-Significant Effect
	1.2	0.288	2.76	0.144	6	0.9984	CDF	Non-Significant Effect
	6.2	1.29	2.76	0.144	6	0.5782	CDF	Non-Significant Effect
	33	0.144	2.76	0.144	6	0.9999	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	0.02927083	0.0058541	66	5		1.08	0.4057	Non-Significant Effect
Error	0.097825	0.0054347	722	18				
Total	0.1270958			23		_		


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	3.08	15.1	0.6879	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.969	0.884	0.6380	Normal Distribution

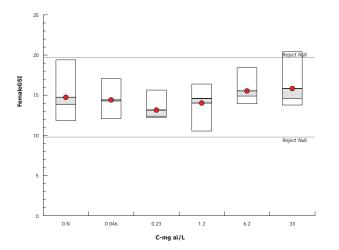
FemaleBodyWt Summary

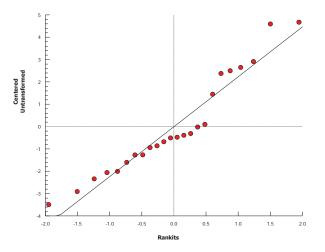
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Negative Control	4	1.14	1.06	1.21	1.13	1.09	1.2	0.0232	4.08%	0.0%
0.046		4	1.1	1.02	1.19	1.1	1.04	1.17	0.0266	4.82%	3.08%
0.23		4	1.04	0.929	1.15	1.04	0.96	1.12	0.0349	6.71%	8.57%
1.2		4	1.12	1.04	1.21	1.13	1.06	1.18	0.0266	4.74%	1.32%
6.2		4	1.07	0.898	1.24	1.1	0.92	1.17	0.054	10.1%	5.93%
33		4	1.13	0.985	1.27	1.14	1.01	1.23	0.0455	8.05%	0.66%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	350 EDSP Fish S	hort-1	Ferm Repro	ducti	ion Assay	(FSTRA)					Wildlife In	ternational
Analysis ID: Analyzed:	06-5595-3988 22 Feb-13 10:3	6	Endpoint: Analysis:		naleGSI ametric-C	ontrol vs Treatments		TIS Vers icial Res		CETISv ² Yes	1.8.7	
Batch ID:	09-5292-6152		Test Type:	ED	SP FSTRA	A Tier 1	Ana	alyst:				
Start Date:	21 Dec-11		Protocol:	OC	SPP 890.1	1350 Tier I FSTRA	Dilu	uent:	Well	Water		
Ending Date:	11 Jan-12		Species:	Pim	nephales p	romelas	Brii	ne:	Not A	pplicable		
Duration:	21d Oh		Source:	Osa	age Catfish	heries, Osage Beach, MI	Age	e:	6 mo			
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOE	L	LOEL	TOEL	TU
Untransformed	1	NA	C <>	Т	NA	NA	33.6%	33		>33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	0.183	2.76	4.94	6	0.9998	CDF	Non-Significant Effect
	0.23	0.887	2.76	4.94	6	0.8418	CDF	Non-Significant Effect
	1.2	0.399	2.76	4.94	6	0.9930	CDF	Non-Significant Effect
	6.2	0.443	2.76	4.94	6	0.9889	CDF	Non-Significant Effect
	33	0.609	2.76	4.94	6	0.9582	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	19.44667	3.889335		5		0.607	0.6959	Non-Significant Effect
Error	115.4119	6.411773		18				
Total	134.8586			23				


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	1.83	15.1	0.8722	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.928	0.884	0.0876	Normal Distribution

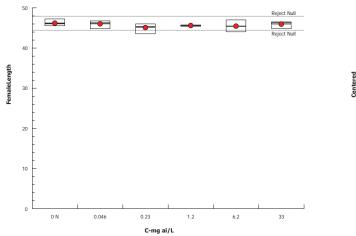
FemaleGSI Summary

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	14.7	9.53	19.9	13.9	11.8	19.4	1.64	22.2%	0.0%
0.046		4	14.4	11.1	17.7	14.3	12.1	17	1.03	14.3%	2.22%
0.23		4	13.1	10.5	15.8	12.4	12.2	15.6	0.833	12.7%	10.8%
1.2		4	14	9.9	18.1	14.6	10.5	16.4	1.29	18.4%	4.85%
6.2		4	15.5	12.3	18.8	14.9	13.9	18.4	1.03	13.2%	-5.38%
33		4	15.8	10.8	20.8	14.6	13.8	20.4	1.57	19.9%	-7.4%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	TS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)												
Analysis ID: Analyzed:	00-3851-8392 22 Feb-13 10:3	5	Endpoint: Analysis:		naleLengt ametric-C	h ontrol vs Treatments		FIS Vers cial Res		CETISv1 Yes	.8.7		
Batch ID: Start Date:	09-5292-6152 21 Dec-11		Test Type: Protocol:			A Tier 1 1350 Tier I FSTRA		lyst: ient:	Well V	Vater			
Ending Date:	11 Jan-12		Species:		ephales p		Brii	ne:	Not Ap	pplicable			
Duration:	21d Oh		Source:	Osa	ige Catfisl	heries, Osage Beach, MI	Age	:	6 mo				
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOE	L	LOEL	TOEL	TU	
Untransformed	1	NA	C <>	Т	NA	NA	3.79%	33	:	>33	NA		

Dunnett Multiple Comparison Test

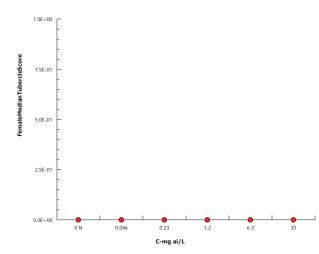

Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Negative Control	0.046	0.296	2.76	1.75	6	0.9982	CDF	Non-Significant Effect
	0.23	1.78	2.76	1.75	6	0.2987	CDF	Non-Significant Effect
	1.2	0.955	2.76	1.75	6	0.8020	CDF	Non-Significant Effect
	6.2	1.18	2.76	1.75	6	0.6528	CDF	Non-Significant Effect
	33	0.395	2.76	1.75	6	0.9933	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	iare	DF		F Stat	P-Value	Decision(α:5%)
Between	3.492687	0.6985374	ļ	5		0.871	0.5198	Non-Significant Effect
Error	14.43917	0.8021764	Ļ	18				
Total	17.93186			23				

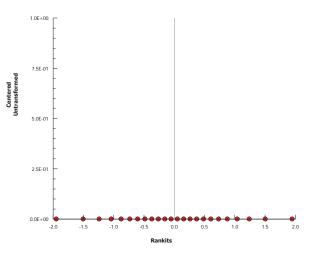

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	6.53	15.1	0.2577	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.959	0.884	0.4282	Normal Distribution

FemaleLength Summary

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Negative Control	4	46.2	45	47.4	46	45.5	47.3	0.373	1.62%	0.0%
0.046		4	46	44.6	47.4	46.3	44.8	46.8	0.433	1.88%	0.41%
0.23		4	45.1	43.3	46.8	45.4	43.5	46	0.544	2.41%	2.44%
1.2		4	45.6	45.3	45.9	45.6	45.3	45.8	0.103	0.45%	1.31%
6.2		4	45.4	43.4	47.4	45.4	44	47	0.632	2.78%	1.62%
33		4	45.9	44.6	47.3	46.3	44.8	46.5	0.413	1.8%	0.54%


OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA) Wildlife International **CETIS Version:** CETISv1.8.7 Analysis ID: 18-9864-2048 Endpoint: FemaleMedianTubercleScore Analyzed: 22 Feb-13 10:35 Analysis: Nonparametric-Two Sample Official Results: Yes Batch ID: 09-5292-6152 Test Type: EDSP FSTRA Tier 1 Analyst: Start Date: 21 Dec-11 Protocol: OCSPP 890.1350 Tier I FSTRA Diluent: Well Water Ending Date: 11 Jan-12 Species: Pimephales promelas Brine: Not Applicable **Duration:** 21d Oh Source: Osage Catfisheries, Osage Beach, MI Age: 6 mo τu **Data Transform** Zeta Alt Hyp Trials Seed NOEL LOEL TOEL Untransformed NA C <> T NA NA 33 >33 NA


Mann-Whitney U Two-Sample Test

Control vs	C-mg ai/L	Test Stat	Critical	Ties	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	8	NA	1	6	1.0000	Exact	Non-Significant Effect
	0.23	8	NA	1	6	1.0000	Exact	Non-Significant Effect
	1.2	8	NA	1	6	1.0000	Exact	Non-Significant Effect
	6.2	8	NA	1	6	1.0000	Exact	Non-Significant Effect
	33	8	NA	1	6	1.0000	Exact	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	0	0		5		65500	<0.0001	Significant Effect
Error	0	0		18				
Total	0			23				

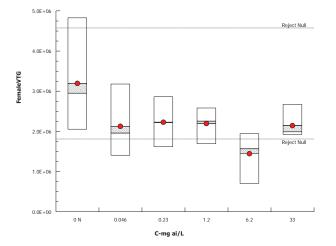
FemaleMedianTubercleScore Summary

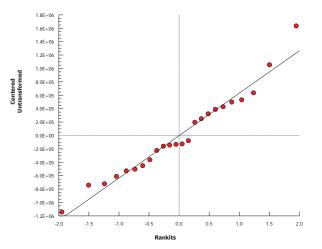
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Contro	4	0	0	0	0	0	0	0		
0.046		4	0	0	0	0	0	0	0		
0.23		4	0	0	0	0	0	0	0		
1.2		4	0	0	0	0	0	0	0		
6.2		4	0	0	0	0	0	0	0		
33		4	0	0	0	0	0	0	0		

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)												
Analysis ID: Analyzed:	20-1443-6213 22 Feb-13 10:3	4	Endpoint: Analysis:		naleVTG ametric-C	ontrol vs Treatments		TIS Vers icial Res		CETISv1 (es	.8.7		
Batch ID: Start Date:	09-5292-6152 21 Dec-11		Test Type: Protocol:			A Tier 1 1350 Tier I FSTRA		alyst: uent:	Well W	ater			
Ending Date:	11 Jan-12		Species:	Pim	ephales p	romelas	Brii	ne:	Not App	olicable			
Duration:	21d Oh		Source:	Osa	age Catfish	neries, Osage Beach, MI	Age	: :	6 mo				
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOE	L L	OEL	TOEL	TU	
Untransformed	1	NA	C <>	Т	NA	NA	43.3%	1.2	6.	2	2.728		

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD DI	F P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	2.14	2.76	1E+06 6	0.1638	CDF	Non-Significant Effect
	0.23	1.93	2.76	1E+06 6	0.2329	CDF	Non-Significant Effect
	1.2	2	2.76	1E+06 6	0.2092	CDF	Non-Significant Effect
	6.2*	3.5	2.76	1E+06 6	0.0108	CDF	Significant Effect
	33	2.1	2.76	1E+06 6	0.1745	CDF	Non-Significant Effect
ANOVA Table							
Source	Sum Squares	Mean Squ	uare	DF	F Stat	P-Value	Decision(α:5%)
Between	6.26239E+12	1.252478	E+12	5	2.5	0.0690	Non-Significant Effect
Error	9.012601E+12	5.007001E	E+11	18			
Total	1.527499E+13			23			


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	5.29	15.1	0.3816	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.967	0.884	0.6036	Normal Distribution

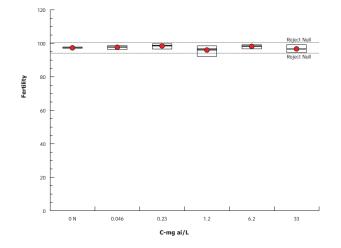
FemaleVTG Summary

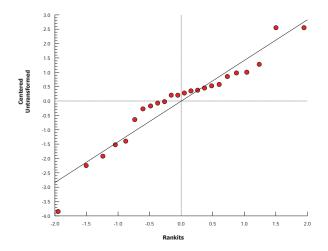
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	3.19E+6	1.33E+6	5.06E+6	2950000	2.05E+6	4.83E+6	5.86E+5	36.7%	0.0%
0.046		4	2.12E+6	8.40E+5	3.41E+6	1960000	1.40E+6	3.18E+6	4.03E+5	38.0%	33.5%
0.23		4	2.23E+6	1.24E+6	3.22E+6	2210000	1.62E+6	2.86E+6	3.11E+5	28.0%	30.3%
1.2		4	2.19E+6	1.55E+6	2.83E+6	2250000	1.69E+6	2.58E+6	2.01E+5	18.3%	31.3%
6.2		4	1.44E+6	5.67E+5	2.32E+6	1570000	7.01E+5	1.94E+6	2.75E+5	38.1%	54.8%
33		4	2.14E+6	1.58E+6	2.71E+6	1990000	1.92E+6	2.67E+6	1.78E+5	16.6%	32.9%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	50 EDSP Fish S	Short-	Ferm Repro	ductio	on Assay	r (FSTRA)					Wildlife In	ternational
Analysis ID: Analyzed:	04-9288-1468 22 Feb-13 10:3	4	Endpoint: Analysis:		,	ontrol vs Treatments		TIS Vers icial Res		ETISv1 ′es	.8.7	
Batch ID: Start Date:	09-5292-6152 21 Dec-11		Test Type: Protocol:			A Tier 1 1350 Tier I FSTRA		alyst: uent:	Well Wa	ater		
Ending Date:	11 Jan-12		Species:	Pime	ephales p	oromelas	Brir	ne:	Not App	licable		
Duration:	21d Oh		Source:	Osa	ge Catfisl	heries, Osage Beach, MI	Age):	6 mo			
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOEI	_ L(DEL	TOEL	TU
Untransformed		NA	C <>	Т	NA	NA	3.24%	33	>3	33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	0.285	2.76	3.15	6	0.9985	CDF	Non-Significant Effect
	0.23	1.01	2.76	3.15	6	0.7699	CDF	Non-Significant Effect
	1.2	1.16	2.76	3.15	6	0.6690	CDF	Non-Significant Effect
	6.2	0.744	2.76	3.15	6	0.9114	CDF	Non-Significant Effect
	33	0.547	2.76	3.15	6	0.9727	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(a:5%)
Between	17.09373	3.418745		5		1.31	0.3034	Non-Significant Effect
Error	46.9425	2.607917		18				
Total	64.03622			23				


Distributional Tests

VariancesBartlett Equality of Variance9.5215.10.0899Equal VariancesDistributionShapiro-Wilk W Normality0.9340.8840.1212Normal Distribution	Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Distribution Shapiro-Wilk W Normality 0.934 0.884 0.1212 Normal Distribution	Variances	Bartlett Equality of Variance	9.52	15.1	0.0899	Equal Variances
	Distribution	Shapiro-Wilk W Normality	0.934	0.884	0.1212	Normal Distribution

Fertility Summary

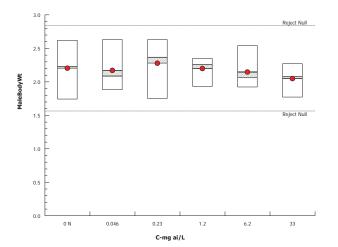
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Negative Control	4	97.3	96.7	97.8	97.1	97	97.8	0.18	0.37%	0.0%
0.046		4	97.6	96	99.2	97.8	96.2	98.6	0.503	1.03%	-0.33%
0.23		4	98.4	96.3	101	98.8	96.5	99.7	0.68	1.38%	-1.18%
1.2		4	96	91.6	100	96.6	92.1	98.5	1.36	2.84%	1.36%
6.2		4	98.1	96.4	99.9	98.4	96.6	99.1	0.548	1.12%	-0.87%
33		4	96.6	93.5	99.8	96.5	94.4	99.2	1	2.08%	0.64%

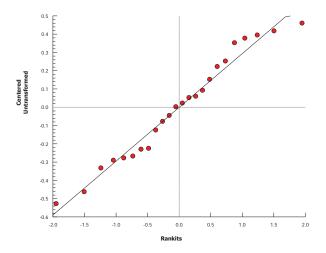
Wildlife International

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

Analysis ID: Analyzed:	06-1661-0832 22 Feb-13 10:34	4	Endpoint: Analysis:		/t Control vs Treatments			IS Version al Result:		1.8.7	
Batch ID:	09-5292-6152		Test Type:	EDSP FST	RA Tier 1		Anal	yst:			
Start Date:	21 Dec-11		Protocol:	OCSPP 89	0.1350 Tier I FSTRA		Dilu	ent: We	ell Water		
Ending Date:	11 Jan-12		Species:	Pimephales	promelas		Brin	e: No	t Applicable		
Duration:	21d Oh		Source:	Osage Catf	isheries, Osage Beach	, MI	Age:	6 r	no		
Data Transfor	m	Zeta	Alt H	lyp Trials	Seed	P	MSD	NOEL	LOEL	TOEL	TU
Untransformed	1	NA	C <>	T NA	NA	29	9.0%	33	>33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Negative Control	0.046	0.141	2.76	0.638	6	1.0000	CDF	Non-Significant Effect
	0.23	0.324	2.76	0.638	6	0.9973	CDF	Non-Significant Effect
	1.2	0.0216	2.76	0.638	6	1.0000	CDF	Non-Significant Effect
	6.2	0.249	2.76	0.638	6	0.9992	CDF	Non-Significant Effect
	33	0.671	2.76	0.638	6	0.9394	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	uare	DF		F Stat	P-Value	Decision(α:5%)
Between	0.1157334	0.0231466	68	5		0.217	0.9508	Non-Significant Effect
Error	1.9232	0.1068444	1	18				
Total	2.038934			23		_		


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	3.23	15.1	0.6644	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.961	0.884	0.4643	Normal Distribution

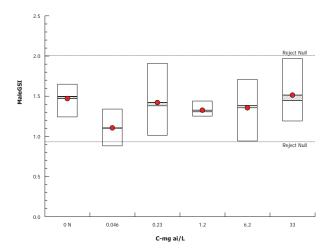
MaleBodyWt Summary

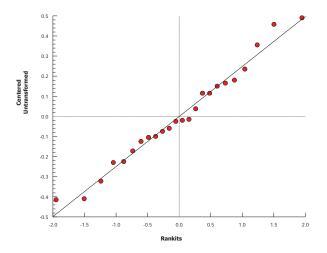
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Negative Control	4	2.2	1.47	2.94	2.22	1.74	2.62	0.231	21.0%	0.0%
0.046		4	2.17	1.62	2.72	2.09	1.88	2.63	0.171	15.8%	1.48%
0.23		4	2.28	1.65	2.91	2.37	1.75	2.63	0.198	17.4%	-3.41%
1.2		4	2.2	1.9	2.49	2.26	1.93	2.35	0.093	8.47%	0.23%
6.2		4	2.14	1.71	2.58	2.06	1.92	2.54	0.137	12.7%	2.61%
33		4	2.05	1.72	2.38	2.07	1.77	2.27	0.104	10.1%	7.04%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	350 EDSP Fish S	hort-	Ferm Repro	ductio	on Assay	r (FSTRA)					Wildlife In	ternational
Analysis ID: Analyzed:	13-6344-6785 22 Feb-13 10:3	3	Endpoint: Analysis:	Male Para		ontrol vs Treatments		TIS Vers icial Res		CETISv1 Yes	.8.7	
Batch ID: Start Date:	09-5292-6152 21 Dec-11		Test Type: Protocol:			A Tier 1 1350 Tier I FSTRA		alyst: uent:	Well V	Vater		
Ending Date:	11 Jan-12		Species:	Pime	ephales p	oromelas	Brii	ne:	Not A	pplicable		
Duration:	21d Oh		Source:	Osa	ge Catfisl	heries, Osage Beach, MI	Age):	6 mo			
Data Transfor	m	Zeta	Alt H	ур	Trials	Seed	PMSD	NOE	L	LOEL	TOEL	TU
Untransformed	1	NA	C <>	Т	NA	NA	36.6%	33		>33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	1.87	2.76	0.538	6	0.2557	CDF	Non-Significant Effect
	0.23	0.257	2.76	0.538	6	0.9991	CDF	Non-Significant Effect
	1.2	0.745	2.76	0.538	6	0.9114	CDF	Non-Significant Effect
	6.2	0.591	2.76	0.538	6	0.9629	CDF	Non-Significant Effect
	33	0.218	2.76	0.538	6	0.9996	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	0.4204208	0.0840841	6	5		1.11	0.3904	Non-Significant Effect
Error	1.365375	0.0758541	7	18				
Total	1.785796			23				


Distributional Tests

VariancesBartlett Equality of Variance5.9215.10.3139Equal VariancesDistributionShapiro-Wilk W Normality0.9740.8840.7686Normal Distribution	Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Distribution Shapiro-Wilk W Normality 0.974 0.884 0.7686 Normal Distribution	Variances	Bartlett Equality of Variance	5.92	15.1	0.3139	Equal Variances
	Distribution	Shapiro-Wilk W Normality	0.974	0.884	0.7686	Normal Distribution

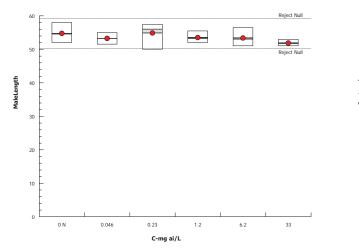
MaleGSI Summary

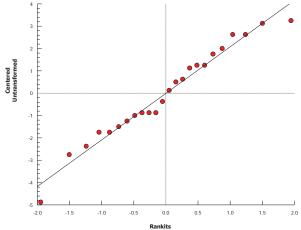
C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
0	Negative Control	4	1.47	1.15	1.79	1.5	1.24	1.65	0.0991	13.5%	0.0%
0.046		4	1.11	0.768	1.44	1.1	0.88	1.34	0.106	19.2%	24.8%
0.23		4	1.42	0.83	2.01	1.38	1.01	1.91	0.185	26.1%	3.4%
1.2		4	1.32	1.2	1.45	1.3	1.25	1.44	0.0405	6.12%	9.86%
6.2		4	1.36	0.822	1.89	1.38	0.94	1.71	0.167	24.7%	7.82%
33		4	1.51	0.973	2.05	1.44	1.19	1.97	0.169	22.4%	-2.89%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

OPPTS 890.13	350 EDSP Fish S	Short-1	Ferm Repro	duction	Assay	(FSTRA)				Wildlife In	ternational
Analysis ID: Analyzed:	04-9763-6661 22 Feb-13 10:3	2	Endpoint: Analysis:	MaleLe Parame	0	ontrol vs Treatments		IS Versi cial Res	on: CETISv ults: Yes	1.8.7	
Batch ID:	09-5292-6152		Test Type:	EDSP F	STRA	Tier 1	Ana	lyst:			
Start Date:	21 Dec-11		Protocol:	OCSPF	9890.1	350 Tier I FSTRA	Dilu	ent:	Well Water		
Ending Date:	11 Jan-12		Species:	Pimeph	ales p	romelas	Brir	ne:	Not Applicable		
Duration:	21d Oh		Source:	Osage	Catfisł	neries, Osage Beach, MI	Age	:	6 mo		
Data Transfor	m	Zeta	Alt H	yp Tri	ials	Seed	PMSD	NOEL	LOEL	TOEL	TU
Untransformed		NA	C <>	T NA	ł	NA	8.26%	33	>33	NA	

Dunnett Multiple Comparison Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	P-Type	Decision(α:5%)
Negative Control	0.046	0.916	2.76	4.52	6	0.8252	CDF	Non-Significant Effect
	0.23	0.0763	2.76	4.52	6	1.0000	CDF	Non-Significant Effect
	1.2	0.763	2.76	4.52	6	0.9033	CDF	Non-Significant Effect
	6.2	0.84	2.76	4.52	6	0.8669	CDF	Non-Significant Effect
	33	1.76	2.76	4.52	6	0.3086	CDF	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	24.42708	4.885417		5		0.911	0.4960	Non-Significant Effect
Error	96.5625	5.364583		18				
Total	120.9896			23				


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	4.6	15.1	0.4661	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.969	0.884	0.6512	Normal Distribution

MaleLength Summary

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	54.8	50.4	59.1	54.5	52	58	1.38	5.03%	0.0%
0.046		4	53.3	50.5	56	53.3	51.5	55	0.878	3.3%	2.74%
0.23		4	54.9	49.2	60.5	56	50	57.5	1.77	6.46%	-0.23%
1.2		4	53.5	51	56	53.3	52	55.5	0.791	2.96%	2.28%
6.2		4	53.4	49.7	57.1	53	51	56.5	1.16	4.35%	2.51%
33		4	51.9	50.2	53.5	51.8	51	53	0.515	1.99%	5.25%

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA) Wildlife International CETISv1.8.7 Analysis ID: 01-6732-3416 Endpoint: MaleMedianTubercleScore **CETIS Version:** Analyzed: 22 Feb-13 10:32 Analysis: Nonparametric-Two Sample Official Results: Yes Batch ID: 09-5292-6152 Test Type: EDSP FSTRA Tier 1 Analyst: Start Date: 21 Dec-11 Protocol: OCSPP 890.1350 Tier I FSTRA Diluent: Well Water Ending Date: 11 Jan-12 Species: Pimephales promelas Brine: Not Applicable Duration: 21d 0h Source: Osage Catfisheries, Osage Beach, MI Age: 6 mo **Data Transform** Zeta Alt Hyp Trials Seed PMSD NOEL LOEL TOEL τu Untransformed NA C <> T NA NA 64.7% 33 >33 NA Mann-Whitney U Two-Sample Test Control vs C-mg ai/L Test Stat Critical Ties **DF P-Value** P-Type Decision(a:5%) Negative Control 0.046 13 NA 0 6 0.1714 Exact Non-Significant Effect 0.23 8 NA 0 6 1.0000 Exact Non-Significant Effect 1.2 15 NA 6 Exact Non-Significant Effect 1 0.0857

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	108.125	21.625	5	0.577	0.7173	Non-Significant Effect
Error	675	37.5	18			
Total	783.125		23			

6

6

1.0000

0.8571

Exact

Exact

Non-Significant Effect

Non-Significant Effect

0

0

Distributional Tests

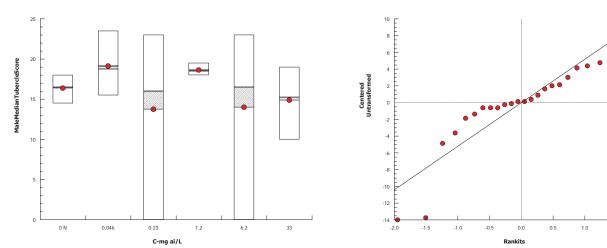
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	19.4	15.1	0.0017	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.874	0.884	0.0064	Non-normal Distribution

MaleMedianTubercleScore Summary

6.2

33

8


9

NA

NA

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Contro	4	16.4	14.1	18.7	16.5	14.5	18	0.718	8.77%	0.0%
0.046		4	19.1	13.9	24.4	18.8	15.5	23.5	1.65	17.3%	-16.8%
0.23		4	13.8	-2.09	29.6	16	0	23	4.98	72.4%	16.0%
1.2		4	18.6	17.4	19.8	18.5	18	19.5	0.375	4.03%	-13.7%
6.2		4	14	-1.64	29.6	16.5	0	23	4.92	70.2%	14.5%
33		4	14.9	8.56	21.2	15.3	10	19	1.98	26.7%	9.16%

Graphics

2.0

1.5

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

NA

C <> T

NA

OPPTS 890.13	350 EDSP Fish Sl	nort-Term Repro	oduction Assay (FSTRA)			Wildlife In	ternational
Analysis ID: Analyzed:	03-8602-7723 22 Feb-13 10:31	Endpoint: Analysis:		CETIS Versior Official Result		.8.7	
Batch ID:	09-5292-6152	Test Type	: EDSP FSTRA Tier 1	Analyst:			
Start Date:	21 Dec-11	Protocol:	OCSPP 890.1350 Tier I FSTRA	Diluent: W	ell Water		
Ending Date:	11 Jan-12	Species:	Pimephales promelas	Brine: No	t Applicable		
Duration:	21d Oh	Source:	Osage Catfisheries, Osage Beach, MI	Age: 6 r	no		
Data Transfor	m	Zeta Alt	Hyp Trials Seed	PMSD NOEL	LOEL	TOEL	TU

190.0%

33

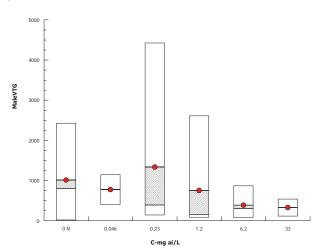
>33

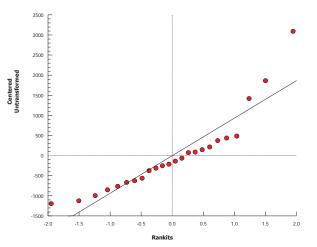
NA

NA

Mann-Whitney U Two-Sample Test

Untransformed


Control vs	C-mg ai/L	Test Stat	Critical	Ties	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	8	NA	0	6	1.0000	Exact	Non-Significant Effect
	0.23	9	NA	0	6	0.8857	Exact	Non-Significant Effect
	1.2	8	NA	0	6	1.0000	Exact	Non-Significant Effect
	6.2	10	NA	0	6	0.6857	Exact	Non-Significant Effect
	33	9	NA	0	6	0.8857	Exact	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	2891146	578229.2		5		0.469	0.7942	Non-Significant Effect
Error	22184360	1232464		18				
Total	25075500			23				


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	17.5	15.1	0.0037	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.859	0.884	0.0033	Non-normal Distribution

MaleVTG Summary

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	1010	-806	2830	803	15	2430	571	113.0%	0.0%
0.046		4	774	280	1270	777	398	1150	155	40.1%	23.5%
0.23		4	1340	-1950	4630	390	139	4420	1030	155.0%	-32.0%
1.2		4	752	-1220	2730	156	83	2610	620	165.0%	25.7%
6.2		4	385	-199	970	301	71	869	184	95.3%	61.9%
33		4	327	-6.7	661	329	111	539	105	64.1%	67.7%

33

>33

NA

Wildlife International

OPPTS 890.1350 EDSP Fish Short-Term Reproduction Assay (FSTRA)

NA

C <> T

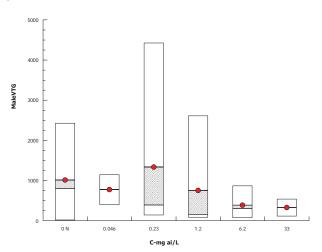
NA

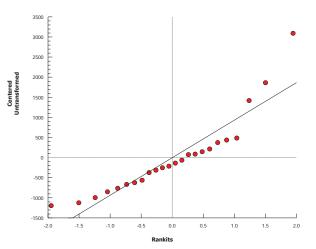
Analysis ID: Analyzed:	13-5082-8160 22 Feb-13 10:38	Endpoint: Analysis:	MaleVTG Nonparametric-Control vs Ord. Treatments	CETIS Ver Official Re		ETISv1.8.7 es		
Batch ID: Start Date:	09-5292-6152 21 Dec-11	Test Type: Protocol:	EDSP FSTRA Tier 1 OCSPP 890.1350 Tier I FSTRA	Analyst: Diluent:	Well Wa	ater		
Ending Date:	11 Jan-12	Species:	Pimephales promelas	Brine:	Not Appl	licable		
Duration:	21d Oh	Source:	Osage Catfisheries, Osage Beach, MI	Age:	6 mo			
Data Transfor	m Zet	a Alt H	lyp Trials Seed	NO	EL LO	DEL TO	DEL	TU

NA

Untransformed

Jonckheere-Terpstra Step-Down Test


Control vs	C-mg ai/L	Test Stat	Critical	MSD	DF	P-Value	Р-Туре	Decision(α:5%)
Negative Control	0.046	8	NA		-2	1.0000	Exact	Non-Significant Effect
	0.23	26	NA		-2	0.8311	Exact	Non-Significant Effect
	1.2	58	NA		-2	0.3819	Exact	Non-Significant Effect
	6.2	99	NA		-2	0.2226	Exact	Non-Significant Effect
	33	146	NA		-2	0.2010	Exact	Non-Significant Effect
ANOVA Table								
Source	Sum Squares	Mean Squ	lare	DF		F Stat	P-Value	Decision(α:5%)
Between	2891146	578229.2		5		0.469	0.7942	Non-Significant Effect
Error	22184360	1232464		18				
Total	25075500			23		_		


Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	17.5	15.1	0.0037	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.859	0.884	0.0033	Non-normal Distribution

MaleVTG Summary

C-mg ai/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Negative Control	4	1010	-806	2830	803	15	2430	571	113.0%	0.0%
0.046		4	774	280	1270	777	398	1150	155	40.1%	23.5%
0.23		4	1340	-1950	4630	390	139	4420	1030	155.0%	-32.0%
1.2		4	752	-1220	2730	156	83	2610	620	165.0%	25.7%
6.2		4	385	-199	970	301	71	869	184	95.3%	61.9%
33		4	327	-6.7	661	329	111	539	105	64.1%	67.7%

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1400, In vivo Hershberger Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-34-2012 (MRID 48617001)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer: <u>Kelly Luck, M.S.</u>	Signature: Date:	04/10/2012
Secondary Reviewer:	Signature:	David a. M. Euro
David A. McEwen, B.S.	Date:	04/16/2012
		Jack D. Eury
Program Manager:	Signature:	$\overline{\mathcal{F}}$
Jack D. Early, M.S.	Date:	4/18/2012
	-	Jack D. Eusy
Quality Assurance:	Signature:	/ J
Jack D. Early, M.S.	Date:	4/18/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

GLYPHOSATE/ 417300	In vivo Hershberger Assay (2012) / Page 1 of 11 OCSPP 890.1400/ OECD 441
	Cha MAI
Primary Reviewer: <u>Anwar Y. Dunbar, Ph.D.</u>	Signature: Mm J. Julo
Risk Assessment Branch 1, Health Effects Division (750	09P) Date: 05 - 27-15
Secondary Reviewer: Greg Akerman, Ph.D.	Signature: A
Risk Assessment Branch 1, Health Effects Division (750	09P) Date: <u><u><u><u></u></u><u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>
	Template version 10/2011
DATA EVALUATION RE	ECORD

STUDY TYPE: In Vivo Hershberger Assay (Rat); OCSPP 890.1400; OECD 441

PC CODE: 417300

DP BARCODE: D398693

TXR#: 0053233

CAS#: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (85.1% a.i.)

<u>SYNONYMS</u>: N-(phosphonomethyl)glycine

<u>CITATION</u>: Stump, D. G. (2012). A Hershberger Assay of Glyphosate Administered Orally in Peripubertal Orchidoepididymectomized Rats. WIL Research Laboratories, LLC, Ashland, OH. Laboratory Report No.: WIL-843003, January 6, 2012. MRID 48617001. Unpublished.

SPONSOR: Joint Glyphosate Task Force, LLC, 8325 Old Deer Trail, Raleigh, NC 27615

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In a Hershberger Assay (MRID 48617001) screening for androgenic activity, glyphosate (85.1% a.i., Batch/lot# GLP-1103-21149-T) in 0.5% methylcellulose (w/v) was administered daily via oral gavage (5 mL/kg) to groups of six 54- or 55-day old, castrated male Sprague Dawley rats at dose levels of 0 (vehicle), 100, 300, or 1,000 (limit dose) mg/kg/day. The androgenic positive control group consisted of 6 castrated rats exposed to 0.2 mg/kg/day of testosterone propionate (TP) by subcutaneous (s.c.) injection.

To screen for potential anti-androgenic activity, glyphosate in 0.5% methylcellulose (w/v) was administered daily via oral gavage to groups of six 54- or 55-day old, castrated male Sprague Dawley rats at dose levels of 0 (vehicle), 100, 300, or 1,000 mg/kg/day in conjunction with a daily dose of reference androgen TP at 0.2 mg/kg/day by s.c. injection. The anti-androgenic positive control group consisted of 6 castrated rats exposed to 0.2 mg/kg/day TP by s.c. injection and 3 mg/kg/day flutamide (FT) via oral gavage. TP alone was used as the anti-androgenic negative control.

For both components of the assay, body weights were determined daily. The animals were dosed for 10 consecutive days and terminated approximately 24 hours after the final dose. At necropsy, the five androgen-dependent tissues were collected and weighed.

All animals survived until scheduled termination. No animals exhibited any dose-related clinical signs of toxicology and there were no treatment-related gross pathological findings.

In the androgen agonist assay, there were no treatment-related effects on body weights, overall body weight gains, or the weights of accessory sex organs for any glyphosate dose group. Animals in the positive TP control group had increased (p<0.01) accessory sex organ weights as follows: 437% in seminal vesicles; 728% in ventral prostate; 200% in levator ani-bulbocavernosus (LABC); 361% in Cowper's gland; and 45% in glans penis. The performance criteria indicated that this assay was performing as expected.

In the anti-androgen assay, there were no treatment-related effects on body weights, overall body weight gains, or the weights of accessory sex organs for any glyphosate dose group. Animals dosed with TP + FT (positive control) had decreased (p<0.01) accessory sex organ weights as follows: 76% in seminal vesicles; 80% in ventral prostate; 63% in LABC; 70% in Cowper's gland; and 29% in glans penis. The performance criteria indicated that this assay was performing as expected.

Statistically significant changes were not seen in two or more of the five androgen sensitive tissue weights. Glyphosate was negative for androgenicity and anti-androgenicity in the Hershberger assay.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for a Hershberger assay (OCSPP 890.1400).

<u>COMPLIANCE</u>: Signed and dated GLP Compliance, Data Confidentiality and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1.	Test Facility:	WIL Research Laboratories, LLC
	Location:	Ashland, OH
	Study Director:	D. G. Stump
	Other Personnel:	E. S. Bodle (Assistant Director, Analytical Chemistry), S. A. Keets (Senior Operations
		Manager, Vivarium), C. A. Kopp (Manager, Gross Pathology and Developmental
		Toxicology Laboratory), G. M. Maginnis (Clinical Veterinarian), T. M. Rafeld (Group
		Manager, Formulations Laboratory), C. S. Wally (Group Supervisor, Sample Processing
		Laboratory), R. A. Wally (Operations Manager, Reporting & Technical Support Services),
		M. E. Haubenstricker (Participating Scientist, Analyses of Dosing Formulations), L.
		Freshwater (Contributing Scientist, Statistical Analysis)
	Study Period:	June 14, 2011 - January 6, 2012
2.	Test Substance:	Glyphosate
	Description:	White powder

Description: Source: Lot/Batch #: Purity: Stability: CAS #: Structure: White powder Monsanto (St. Louis, MO) GLP-1103-21149-T (expiration date 3/9/2012) 85.14% (95.93% dried) Stable in vehicle for up to 15 days at room temperature 1071-83-6

H `он HO

3. <u>Reference Androgen:</u> Supplier:

Lot/Batch #: Purity: CAS #:

4. <u>Reference Anti-androgen</u>:

Supplier: Lot/Batch #: Purity: CAS #:

5. <u>Solvent/Vehicle Control</u> (test substance):

Supplier: Lot #: Rationale (if other than water): Final concentration:

Solvent/Vehicle Control

(TP and FT): Supplier:

Lot #:

Rationale (if other than water): Final concentration:

Testosterone propionate (TP)

AK Scientific, Inc. (Mountain View, CA) 70321J (expiration date 8/9/2012) 98.3% 57-85-2

Flutamide (FT)

Spectrum Chemical Manufacturing Corporation (New Brunswick, NJ) 2AC0144 (expiration date 3/1/2013) 100% 13311-84-7

Methylcellulose

Sigma Chemical (St. Louis, MO) 060M0123V (expiration date 5/1/2013) Test substance not soluble in water at the concentrations used in the study 0.5% (w/v)

Ethanol/Corn oil

Spectrum Chemical Manufacturing Corporation (New Brunswick, NJ) Ethanol: ZT0426 (expiration date 8/2/2013) Corn oil: ZT1301 (expiration date 7/1/2012) Not applicable TP and FT were dissolved in minimal amounts of 95% ethanol and then diluted with corn oil (ratio of ethanol to corn oil not reported)

6.	Test Animals:		
	Species:	Rat (castrated ma	ales only)
	Strain:	Sprague Dawley	[Crl:CD(SD)]
	Age/weight at dose initiation:	Post-natal day (F	ND) 54-55 (approximate)/ 211.3-279.2 g
	Source:	Charles River La	boratories (Portage, MI)
	Housing:		dually housed in stainless steel wire-mesh cages suspended
	D' 4	above cage board	
	Diet:		LabDiet® 5002, PMI International, ad libitum
			ontent was not reported
	Water:	Reverse-osmosis	purified drinking water, ad libitum
	Environmental conditions:	Temperature:	21.3-21.6 °C (mean daily temperature)
		Humidity:	51.8-55.2% (mean daily humidity)
		Air changes:	10/hr
		Photoperiod:	12 hrs light/12 hrs dark
	Acclimation period:		ted at the supplier and received at the facility approximately astration; rats were then allowed a 6-day acclimation period
р	OTUDY DECICN		

- B. STUDY DESIGN
- 1. <u>In life dates</u>: Start: June 27, 2011 End: July 7, 2011
- 2. <u>Study Design</u>: In a Hershberger Assay conducted to screen for potential androgenic activity, the test substance was administered daily via oral gavage to castrated male rats. Positive androgenic activity is defined as a significant increase in two or more target organ weights compared to the vehicle control. To screen for the potential anti-androgenic activity, the test substance was also administered daily via oral gavage to castrated male rats in conjunction with a daily dose of TP (0.2 mg/kg/day) by s.c. injection. Anti-androgenic activity is indicated by a statistically significant decrease in two or more target organ weights of the treated groups (test substance + TP) compared to the TP-only control group. For both assays, the animals were dosed for 10 consecutive days and necropsied approximately 24 hours after the final dose administration for organ weight measurements.
- **3.** <u>Study Schedule</u>: Male rats were castrated on PND 42 (approximate age) according to standard procedures and allowed approximately 13 days for recovery and regression of accessory sex organ weights prior to initiation of dosing. The dose administration period was from PND 54 or 55 through PND 63 or 64 (approximate age). Rats were euthanized approximately 24 hours after the last dose and necropsied for organ weight measurements.
- 4. <u>Animal Assignment</u>: Animals were randomly assigned, stratified by body weight, to the test groups noted in Table 1. Statistical analysis indicated that there were no significant differences in group means at study initiation. Furthermore, the body weight of each animal was within ±20% of the overall mean.

TABLE 1. Study Design ^a		
Test group	Dose (mg/kg/day)	# of Males
Androgen	Agonist Assay	-
Vehicle control (negative control)	0	6
Low (Glyphosate)	100	6
Mid (Glyphosate)	300	6
High (Glyphosate)	1000	6
Testosterone propionate (TP), positive control ^b	0.2	6
Anti-And	rogen Assay	
Low (Glyphosate + TP)	100 + 0.2	6
Mid (Glyphosate + TP)	300 + 0.2	6
High (Glyphosate + TP)	1000 + 0.2	6
Flutamide + TP, positive control	3 + 0.2	6

a Data were obtained from page 26 of the study report. Glyphosate concentrations are expressed as free base equivalents.

b This dose group served as the positive control for the androgen agonist assay and the negative control for the anti-androgen assay.

- 5. Dose Selection Rationale: The dose levels used in this study were chosen based on the results of a dose range-finding study.¹ In the study, the test substance was administered by oral gavage to four groups of five adult male rats (strain not identified) at 0, 200, 500, and 1,000 mg/kg/day once daily for 10 days. All males survived to the scheduled necropsy. Mean body weight gain was decreased at 500 and 1,000 mg/kg/day, resulting in mean body weights that were 9% and 5% lower, respectively, than the control group on Day 10. Mean liver, adrenal gland, and kidney weights in all test substance-treated groups were comparable to the control group. Therefore, the high-dose level of 1,000 mg/kg/day (limit dose) was selected for the current study.
- 6. (a) <u>Dose Preparation</u>: Dose formulations were prepared twice during the study as single formulations for each dose level, by mixing appropriate amounts of test substance with 0.5% methylcellulose. Formulations of TP and FT were prepared once by dissolving the material in a small amount of 95% ethanol and diluting to volume with corn oil. Analyses to demonstrate homogeneity, stability, and resuspension homogeneity were conducted previously for dose formulations at 1 and 200 mg/mL following up to 15 days of room temperature storage.² During the study, samples of each test substance dosing formulation (middle stratum of each) prepared during the in-life phase were analyzed for achieved concentration.

(b) Dose Analysis:

Results

Homogeneity: Not provided

- Stump, D.G. A Dose Range-Finding Oral (Gavage) Toxicity Study of Glyphosate in Young Adult Rats for the Endocrine Disruption Screening Program (Study No. WIL-843001). WIL Research Laboratories, LLC, Ashland, OH, 2011.
- 2 Haubenstricker, M.E. Analytical Validation and Stability Study of Glyphosate in Aqueous Formulations (Study No. WIL-843004). WIL Research Laboratories, LLC, Ashland, OH, 2011.

Stability: It was stated that glyphosate in 95% methylcellulose at 1 and 200 mg/mL was stable at room temperature for 15 days.

Concentration (percent of nominal): 104-114%

The analytical data indicated that the variation between nominal and actual dosage to the animals was acceptable. The study referenced above should be submitted for verification of the homogeneity and stability findings.

- 7. <u>Dosage administration</u>: Test formulations were administered to the animals daily via oral gavage (5 mL/kg) for 10 days. TP was given via s.c. injection at 0.5 mL/kg, and FT was administered via oral gavage at 5 mL/kg. Dose volumes were adjusted daily based on the concurrent body weight measurement.
- 8. <u>Statistics</u>: Statistical analyses were conducted for organ weights, daily body weights, and body weight gains. Each endpoint was tested for homogeneity of variance using Levene's test. If that test was significant at p=0.01, then a log transformation was applied and Levene's test conducted on the transformed data. If that test was still significant, then the square root transformation was applied to the raw data (except cumulative body weight gain) and Levene's test conducted again. If the test was still significant, then a nonparametric test, as described below, was used to analyze the data. One-sided tests were conducted for in-life data and two-sided tests were conducted for organ weight data.

If variances were homogeneous, the one- or two-sided t-test (for comparing positive control data to data for negative control) or an ANOVA (for comparing dose groups to the negative control) was performed on data; the ANOVA test was followed by a one- or two-sided Dunnett's test. If the transformations were unsuccessful in making the variances homogeneous, the nonparametric one- or two-sided Wilcoxon rank sum test was used to compare data for the positive control to the negative control. For comparison of dose groups to the negative control, if the transformations were unsuccessful in making the variances homogeneous, the nonparametric Kruskal-Wallis test was used, followed by a one- or two-sided Dunn's test. Significance was denoted at p<0.05. Statistical analyses were performed using SAS software (version 9.2 or higher). The statistical analyses were considered adequate.

C. <u>METHODS</u>

- 1. <u>Clinical Examinations</u>: Cage-side checks for mortality and moribundity were conducted twice daily. Individual clinical observations (hand-held physical examinations) were recorded daily through termination. Each rat was also observed for signs of toxicity approximately 4 hours following dosing.
- 2. <u>Body Weight</u>: Animals were weighed at randomization, daily throughout the dosing period, and on the day of termination. Mean body weight changes were calculated for each corresponding interval and also for the overall dosing period (Days 1-11).
- 3. <u>Food Consumption (Optional)</u>: Food consumption was not measured.

- 4. Serum Hormone Measurements (Optional): At study termination, each animal was anesthetized with isoflurane, and blood was collected from the vena cava for potential future serum hormone analyses; however, serum hormone analyses were not conducted for this study.
- 5. Dissection and Measurement of Tissue and Organ Weights: On PND 64 or 65 (approximately 24 hours after the final administration of the test substance), all animals were anesthetized with isoflurane, exsanguinated, and examined. The five mandatory androgen-dependent organs (ventral prostate, seminal vesicles with coagulating glands, LABC, Cowper's gland, and glans penis) were excised and weighed fresh (unfixed) according to the standard operating procedures detailed in the U.S. EPA Guideline (OCSPP 890.1400). The accessory sex organs were placed in 10% neutral buffered formalin.

II. RESULTS

A. OBSERVATIONS

- 1. Mortality: All animals survived until scheduled termination.
- 2. **Clinical signs of toxicity:** No remarkable clinical signs of toxicity were observed in animals for any dose groups. Any clinical findings noted in the dose groups occurred infrequently, in a manner that was not dose related, and/or at similar frequency as the vehicle control group.
- B. BODY WEIGHT AND WEIGHT GAIN: Selected body weight and body weight gain data for the androgen agonist assay are presented in Table 2. Body weights in the treatment groups and positive control group were comparable to controls throughout the duration of the study.

Age		t Assay ^a	Wiean	Dou	y weigh	its and	Cui	lulative	Douy	v eigi	n Gain	s (g) II		Indiog	en		
				Dose (mg/kg/day)													
Study Day #	V	ehicle Co	ntrol	Positive Control Vehicle + TP (0.2)			Glyphosate (100)			Glyphosate (300)			Glyphosate (1000)				
	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD		
1	6	243.3	14.7	6	237.7	18.4	6	240.9	15.7	6	240.9	13.5	6	240.9	13.7		
4	6	261.7	14.3	6	257.0	21.4	6	258.5	17.3	6	259.5	17.2	6	258.2	13.2		
7	6	281.2	14.0	6	278.2	23.6	6	276.7	17.6	6	279.3	20.2	6	271.7	23.5		
11	6	309.1	13.2	6	311.1	31.8	6	306.6	17.5	6	308.8	23.2	6	300.5	20.9		
Body Weight Gain (Days 1-11)	6	65.8	6.9	6	73.4	15.2	6	65.7	5.9	6	67.9	13.9	6	59.6	13.2		

TARLE 2 Selected Group Mean Body Weights and Cumulative Body Weight Gains (9) in the Androgen

Data were obtained from Table 4 on page 93 of the study report. а

Ν Number of animals in the group

SD Standard Deviation

Selected body weight and body weight gain data for the anti-androgen agonist assay are presented in Table 3. Body weights in the treatment groups and positive control group were comparable to controls throughout the duration of the study.

TABLE 3. Sel An		d Group ndrogen			y Weigh	its and	Cun	nulative	Body	Weig	ht Gain	s (g) in	the		
							Dos	e (mg/kg	/day)						
Study Day #	Vel	Vehicle Control + TP (0.2)Positive Control TP + FT (0.2 + 3)Glyphosate + TP (100 + 0.2)Glyphosate + TP (300 + 0.2)Glyphosate + TP (100 + 0.2)												1	
	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD
1	6	237.7	18.4	6	240.6	17.8	6	238.3	16.1	6	239.6	16.5	6	242.1	20.4
4	6	257.0	21.4	6	262.0	21.1	6	257.6	16.8	6	264.9	17.3	6	265.2	22.7
7	6	278.2	23.6	6	281.8	26.7	6	281.6	17.8	6	286.5	17.7	6	286.3	24.1
11	6	311.1	31.8	6	310.6	28.5	6	317.2	16.7	6	322.4	19.5	6	320.1	26.5
Body Weight Gain (Days 1-11)	6	73.4	15.2	6	70.0	12.2	6	78.9	6.4	6	82.8	6.2	6	78.0	10.6

a Data were obtained from Table 5 on page 94 of the study report.

N Number of animals in the group

SD Standard Deviation

- C. <u>FOOD CONSUMPTION (Optional)</u>: Food consumption was not measured.
- **D.** <u>SERUM HORMONE CONCENTRATIONS (Optional)</u>: Serum hormone concentrations were not measured.
- E. <u>ORGAN WEIGHTS</u>: Accessory sex organ weights for the androgen agonist assay are presented in Table 4. There were no treatment related effects in accessory sex organs for any glyphosate dose group. Animals in the TP group had increased (p<0.01) accessory sex organ weights as follows: 437% in seminal vesicles; 728% in ventral prostate; 200% in LABC; 361% in Cowper's gland; and 45% in glans penis.</p>

Percent CVs for the vehicle control and the glyphosate treatment groups were compared to the performance criteria in the Guidelines. All %CV values were less than the maximum permissible values.

TABLE 4		. Accessory Sex Organ Weights (mg) from Androgen Agonist Assay in Sprague Dawley Rats ^a Dose (mg/kg/day)																		
Organ	Vehicle Control			Positive Control Vehicle + TP (0.2)			Glyphosate (100)			Glyphosate (300)				Glyphosate (1000)						
	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)
Seminal vesicles	6	86.4	12.1	14.0	6	463.6** (†437)	35.9	7.8	6	89.3	14.0	15.7	6	93.1	14.7	15.8	6	84.4	19.3	22.9
Ventral prostate	6	16.2	3.7	23.0	6	134.2** (†728)	22.2	16.5	6	21.5	9.4	43.7	6	15.1	5.5	36.5	6	17.2	4.3	24.8
LABC	6	157.3	22.0	14.0	6	471.6** (†200)	63.1	13.4	6	160.0	30.5	19.0	6	151.8	14.2	9.4	6	164.3	19.3	11.8
Cowper's glands	6	6.2	1.3	21.5	6	28.6** (†361)	6.4	22.2	6	6.6	2.0	30.4	6	7.0	2.0	28.8	6	6.4	1.5	23.0
Glans penis	6	105.0	15.9	15.2	6	152.1** (†45)	20.9	13.7	6	102.0	14.4	14.1	6	103.6	20.1	19.4	6	100.8	16.4	16.2

a Data were obtained from Tables 6 and S18 on pages 85, 86, and 95 of the study report. Percent differences from controls are included in parentheses.

N Number of animals in the group

SD Standard Deviation

CV Coefficient of Variation

** Significantly different from controls at p<0.01

Accessory sex organ and liver weights for the anti-androgen assay are presented in Table 5. There were no treatment related effects in accessory sex organs for any glyphosate dose group. Animals dosed with TP + FT (positive control) had decreased (p<0.01) accessory sex organ weights as follows: 76% in seminal vesicles; 80% in ventral prostate; 63% in LABC; 70% in Cowper's gland; and 29% in glans penis. Liver weights in the positive control group were comparable to the vehicle control.

Percent CVs for the vehicle control and the glyphosate treatment groups were compared to the performance criteria in the Guidelines. All %CV values were less than the maximum permissible values.

TABLE 5		11153	01 y 3		gall	** eights	(ing)	11011	m Anti-Androgen Agonist Assay in Sprague Dawley Rats ^a Dose (mg/kg/day)												
Organ	Vehicle Control + TP (0.2)			Positive Control TP + FT (0.2 + 3)				$\frac{1000 \text{ (ing, ing, day)}}{\text{Glyphosate + TP}}$			Glyphosate + TP (300 + 0.2)				Glyphosate + TP (1000 + 0.2)						
	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	
Seminal vesicles	6	463.6	35.9	7.8	6	111.9** (↓76)	17.5	15.6	6	411.0	71.9	17.5	6	417.5	99.5	23.8	6	391.6	75.3	19.2	
Ventral prostate	6	134.2	22.2	16.5	6	27.0** (↓80)	8.2	30.3	6	112.2	18.5	16.5	6	110.6	26.5	24.0	6	125.3	25.3	20.2	
LABC	6	471.6	63.1	13.4	6	173.9** (↓63)	31.3	18.0	6	405.4	49.0	12.1	6	461.0	92.1	20.0	6	471.8	83.1	17.6	
Cowper's glands	6	28.6	6.4	22.2	6	8.7** (↓70)	1.9	22.1	6	31.1	3.1	10.0	6	28.5	9.2	32.4	6	29.9	5.0	16.6	
Glans penis	6	152.1	20.9	13.7	6	108.3** (↓29)	5.9	5.4	6	150.6	17.9	11.9	6	148.8	23.7	15.9	6	168.2	15.4	9.2	

a Data were obtained from Tables 7 and S19 on pages 87, 88, and 95 of the study report. Percent differences from controls are included in parentheses.

N Number of animals in the group

SD Standard Deviation

CV Coefficient of Variation

** Significantly different from controls at p<0.01

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATOR'S CONCLUSIONS</u>: Based on the results of this study, no androgenic or anti-androgenic effects of glyphosate were noted on the androgen-sensitive organs at any dosage level up to 1,000 mg/kg/day (the limit dose and highest level tested) when administered orally by gavage to male Crl:CD(SD) rats. The anti-androgenic positive control substance, flutamide, elicited the expected responses (lower weights of androgen-dependent organs). The androgenic positive control substance, testosterone propionate, elicited the expected responses (higher weights of androgen-dependent organs) as defined in the test guidance for this study design.
- **B.** <u>AGENCY COMMENTS</u>: All animals survived until scheduled termination. No animals exhibited any dose-related clinical signs of toxicology.

In the androgen agonist assay, there were no treatment-related effects on body weights, overall body weight gains, or the weights of accessory sex organs for any dose group. Animals in the positive control group had the expected increases accessory sex organ weights. The performance criteria indicated that the assay was performing as expected.

There were no treatment-related effects on body weights, overall body weight gains, or the weights of accessory sex organs for any dose group in the anti-androgen assay. Animals dosed with TP + FT (positive control) had the expected decreases in accessory sex organ weights. The performance criteria indicated that the assay was performing as expected.

Statistically significant changes were not seen in two or more of the five androgen sensitive tissue weights. Glyphosate was negative for androgenicity and anti-androgenicity in the Hershberger assay.

C. <u>STUDY DEFICIENCIES</u>: None

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1450, Female Pubertal Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-74-2012 (MRID 48671315)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	David a. M. Euro
David A. McEwen, B.S.	Date:	6/20/2012
Secondary Reviewer:	Signature:	And lecterberg
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	75/2012
Drogrom Monogory	Signatura	Jack Q. Eury
Program Manager:	Signature:	
Jack D. Early, M.S.	Date:	7/13/2012
Quality Assurance:	Signature:	Stem bight
Steven Brecher, Ph.D., D.A.B.T.	Date:	7/13/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

GLYPHOSATE/ 417300	OCSPP 890.1450/ OECD None
Primary Reviewer: <u>Anwar Y. Dunbar, Ph.D.</u> Risk Assessment Branch 1, Health Effects Division (7509P) Secondary Reviewer: <u>Elizabeth Mendez, Ph.D.</u> Risk Assessment Branch 1, Health Effects Division (7509P)	Signature:

DATA EVALUATION RECORD

<u>STUDY TYPE</u>: Female Pubertal Assay; OCSPP 890.1450; OECD None.

PC CODE: 417300

DP BARCODE: D401747

. . .

TXR #: 0053233

CAS No: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate technical (95.93% a.i.)

<u>SYNONYMS</u>: *N*-(phosphonomethyl)glycine

<u>CITATION</u>: Stump, D.G. (2012) A Pubertal Development and Thyroid Function Assay of Glyphosate Administered Orally in Intact Juvenile/Peripubertal Female Rats. WIL Research Laboratories, LLC, Ashland, OH, Laboratory Project ID: WIL-843007, April 10, 2012. MRID 48671315. Unpublished.

SPONSOR: Joint Glyphosate Task Force, LLC. c/o Data Group Management, 8325 Old Deer Trail, Raleigh, NC

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In a Female Pubertal Assay (MRID 48671315), 15 Crl:CD(SD) Sprague-Dawley rats/dose group were treated daily via oral gavage with glyphosate technical (95.93% a.i., Lot #: GLP-1103-21149-T) in 0.5% methylcellulose at doses of 0, 100, 300 or 1000 mg/kg/day (limit dose) from post-natal day (PND) 22 to 42. Animals were examined for vaginal opening (VO) daily beginning on PND 22, and age and weight at day of attainment were recorded. Following sacrifice on PND 42, blood was collected for clinical chemistry analyses, including total thyroxine (T₄) and thyroid stimulating hormone (TSH) levels, which were analyzed using an electrochemiluminescent immunoassay (T₄) and a magnetic [¹²⁵I]rTSH gamma counter immunoassay (TSH). Liver, adrenal glands, thyroid, pituitary, and urogenital organ weights were recorded, and microscopic examinations were performed on the thyroid, kidneys, ovary and uterus.

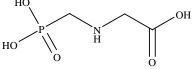
One animal in the control group was sacrificed *in extremis* on PND 27 due to impairment of the right forelimb (due to possible mechanical injury). All other animals survived until scheduled sacrifice. Treatment-related clinical signs were limited to rales in 4/15 and 13/15 females in the 300 and 1000 mg/kg/day groups, respectively, at approximately 4 hours post-dosing. This finding did not persist to the daily examinations. No other treatment-related clinical signs were noted during the 4-hour post-dosing or daily examinations at any dose level. There were no treatment-related differences in age of attainment of VO, body weight at VO, final body weights, or body weight gains in the treated groups relative to controls. One female each in the control

and 300 mg/kg/day groups failed to attain VO. There were no statistically significant differences in mean age at first vaginal estrus, mean cycle length, or percent cycling. The cycle status at necropsy was similar among all groups. Serum T₄ and TSH were not affected by treatment, and no adverse treatment-related effects on any clinical chemistry parameter were observed at any dose. There were no treatment-related microscopic findings in the thyroid, ovaries, uterus, or kidneys at any dose.

The dose levels tested were adequate since the high dose was the Limit Dose (1000 mg/kg/day).

The assay **satisfies** the EDSP Tier 1 Test Order requirements for a Female Pubertal Assay (OCSPP 890.1450).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.


I. MATERIALS AND METHODS

A. MATERIALS

1.	Test Facility:	WIL Research Laboratories, LLC
	Location:	Ashland, OH
	Study Director:	D.G. Stump
	Other Personnel:	C.A. Picut, Pathologist
		M.E. Haubenstricker, Analytical Chemist
		L. Freshwater, Statistics
	Study Period:	August 23, 2011 – April 10, 2012

2. <u>Test Substance</u>: Glyphosate

Description: Source: Lot/Batch #: Purity: Stability: CAS #: Structure: White powder Monsanto (St. Louis, MO) GLP-1103-21149-T (exp. March 9, 2012) 95.93% (dried) Stable in 0.5% methylcellulose for up to 15 days at room temperature 1071-83-6 HO

3. <u>Vehicle:</u> 0.5% Methylcellulose in deionized water

4. <u>Test Animals</u>:

Species:	Rat	
Strain:	Crl:CD(SD) Sprague-Da	wley
Age/Weight at		
Study Initiation:	PND 22/41.4 – 51.3 g fe	males only
Source:	Charles River Laborator	ies (Portage, MI)
Housing:	2-3/cage in plastic cages	with heat treated laboratory-grade pine shavings for bedding.
Diet:	Harlan Laboratories 201	6CM Teklad Global 16% protein rodent diet, ad libitum
	Phytoestrogen content av	verage 11 ppm total isoflavones (genistein+daidzein+glycitein)
Water:	Municipal water, reverse	e-osmosis filtered (on site), ad libitum
Environmental	Temperature:	21.4-22.1 °C
Conditions:	Humidity:	41.2-58.9%
	Air changes:	$\geq 10/hr$
	Photoperiod:	14 hrs light/ 10 hrs dark

B. STUDY DESIGN

- 1. <u>In-Life Dates</u>: Start: September 28, 2011 End: October 19, 2011
- <u>Mating</u>: Time-mated pregnant dams were received from the supplier on gestation day (GD)
 The day evidence of mating was confirmed was designated GD 0. To reduce variability, litters were culled to 5 pups/sex (when possible) on PND 4. The male offspring were used for a concurrently submitted male pubertal assay (MRID 48671313).
- **3.** <u>Animal Assignment</u>: Following weaning on PND 21, animals were randomly assigned (stratified by weight in a block design) to the test groups noted in Table 1. Littermates were not assigned to the same treatment group.

TABLE 1. Study Design ^a		
Test group	Dose (mg/kg/day)	# of Females
Control	0	15
Low	100	15
Mid	300	15
High	1000	15

a Data were obtained from page 26 of the study report.

- 4. <u>Dose Selection Rationale</u>: The dose levels for the current study were selected based on the results of a 7-day oral gavage range-finding study (WIL Study No. WIL-843006, data not provided) in juvenile female rats. The animals (5/dose) were administered glyphosate daily via oral gavage from PND 22-28 at dose levels of 200, 500, and 1000 mg/kg/day. No treatment-related effects were observed in clinical observations, body weights, or body weight gains at any dose level. Slightly lower food consumption was noted at 1000 mg/kg/day. Based on these results, dose levels of 100, 300, and 1000 mg/kg/day (limit dose) were selected for this female pubertal assay. Although the data for the dose range-finding study (WIL Study No. WIL-843006) were not provided, the animals were dosed up to the limit dose of 1000 mg/kg/day and it was concluded that the animals were dosed at a sufficiently high level.
- 5. <u>Dose Preparation and Analysis</u>: Dose formulations were prepared approximately weekly by mixing appropriate amounts of test substance with 0.5% methylcellulose in deionized water, and then were divided into aliquots for daily dispensation. It was stated that analyses to demonstrate homogeneity and stability of the test substance in formulations for up to 15 days of room temperature storage at concentrations of 1 and 200 mg/mL (which bracketed those used in the current study) were conducted in a previous study (Haubenstricker, 2011, WIL-843004); however, no data were provided. Concentration of the test material as administered to the study animals was assessed from the middle stratum of each dosing formulation prepared during the in-life phase of the study. Additionally, the reviewers derived the homogeneity (% RSD) of the samples collected for concentration analysis.

Results of Dose Analysis

Homogeneity (% RSD): 0.12-2.7%

Stability (% of initial): Data not provided

Concentration (% of nominal): 98.9-112%

The analytical data indicated that the mixing procedure was adequate and that the variation between nominal and actual dosage to the animals was acceptable.

6. <u>Dosage Administration</u>: All doses were administered once daily by oral gavage, from PND 22 through PND 42, in a volume of 5 mL/kg of body weight. Dosing was performed between 0700 and 0900 hours daily.

7. <u>Statistics</u>: Statistics were conducted at WIL Research and at BioSTAT Consultants, Inc. At WIL, cycling status (cycling vs. non-cycling) and percent of animals cycling were assessed using Chi-square analysis. Estrous cycle length and day of first estrus were analyzed using a one-way analysis of variance (ANOVA) followed by Dunnett's test when intergroup differences were indicated by ANOVA. Dichotomous pathology data were analyzed with pairwise Fisher's exact test. Tests were conducted at the $p \le 0.05$ significance level.

At BioSTAT, the data that were statistically analyzed included organ weights (liver, kidneys, pituitary and adrenals), organ weight to final body weight ratios, daily body weights, weight gains, serum chemistries, hormones and vaginal opening data. Each endpoint was tested for homogeneity of variance using Levene's test. If this was positive $(p \le 0.01)$ then log or square root transformations were applied to the data; if these were positive then a non-parametric test was used. Organ weights, age at vaginal opening and weight at vaginal opening data, when parametric, were analyzed using analysis of covariance (ANCOVA) followed by Dunnett's test using PND 21 body weights as the covariate. Other parameters were analyzed with ANOVA followed by Dunnett's test. Linear trend tests were used in conjunction with both ANOVA and ANCOVA. For non-parametric data the Kruskal-Wallis test was used followed by Dunn's test. Pathology data presented as a graded response were analyzed with a pairwise Mann-Whitney U test.

C. <u>METHODS</u>

- 1. <u>Mortality and Clinical Examinations</u>: All animals were examined twice daily for mortality and moribundity. Clinical examinations were conducted daily (prior to dosing) through the day of euthanasia. Additionally, animals were examined approximately 4 hours post-dosing for clinical signs.
- 2. <u>Body Weight</u>: Animals were weighed on the day of randomization, daily prior to dosing and the day of euthanasia. Mean body weight changes were calculated for each corresponding interval and also for the overall treatment period (PND 22-42).
- 3. <u>Vaginal Opening</u>: Beginning on PND 22, all animals were examined daily for onset of vaginal opening. The appearance of a small "pin hole", a vaginal thread, and complete vaginal opening were recorded for all days they were observed. Age and weight on the day of completion of vaginal opening were recorded.
- 4. <u>Estrous Cyclicity</u>: Beginning on the day of vaginal opening, up to and including the day of necropsy, daily vaginal smears were obtained and evaluated to determine the stage of estrus for each female. Cycle length was determined for a complete estrous cycle by counting the number of days from one diestrus to the next diestrus or from one metestrus to the next metestrus. The overall pattern for each female was characterized as regular, irregular, non-cycling or insufficient data. The definitions for these terms are as follows:
 - Regular cycling (RC): the animal has at least 6 days of data collected and displays 1 complete cycle with no cycles greater than 5 days of duration, no cycles with 3 or more days of proestrus (P) and/or estrus (E), and no cycles less than 4 days in duration.

- Irregular cycling (IC): 1) the animal does not display 1 complete cycle but has at least 1 E and/or P and a partial cycle greater than 5 days, 2) the animal has at least 1 E and either at least 1 cycle (complete or partial) greater than 5 days in duration or at least 1 cycle with 3 or more consecutive days of P and/or E, 3) the animal has at least 1 cycle less than 4 days in duration, or 4) the animal has 1 irregular cycle and 1 regular cycle.
- Non-cycling (NC): no E or P present on any days of estrous cycle determination and at least 5 days of data collected.
- Insufficient data (ID): 1) the animal does not display at least 1 complete cycle but has at least 1 E and/or P and a partial cycle of 5 days or fewer, 2) no E is present on any days of estrous cycle determination and 4 or fewer days of data collected, or 3) at least 1 E or P present and only 1-4 days of data collected.

Percent cycling and percent regularly cycling were calculated as follows:

Percent cycling: $[(RC + IC + ID) / (RC + IC + ID + NC)] \times 100$

Percent cycling regularly: [RC / (RC + IC)] X 100

- 5. Sacrifice and Pathology: On the day before euthanasia, rats were moved to a holding room separate from where the necropsies were to be performed. Dosing was performed in the holding room on the day of termination and the animals were moved to the necropsy room one at a time for terminal procedures. Approximately 2 hours following dosing, animals were sacrificed by decapitation without anesthesia and all sacrifices were completed by 1300 hours to minimize hormonal variability due to normal diurnal fluctuation. Immediately following decapitation, trunk blood samples were taken for T₄, TSH and serum chemistry analyses. The sample for TSH analysis was stored at approximately -20°C and the sample for T₄ was analyzed fresh.
- **a.** <u>Hormone Analysis</u>: Total T₄ was analyzed using an electrochemiluminescent assay on the Cobas e411 (Roche Diagnostics, Indianapolis, IN) and TSH levels were analyzed using an [¹²⁵ I] rTSH kit (Izotop, Institute of Isotopes Ltd., Budapest, Hungary). For both assays, multiple quality control samples were run prior to analysis.
- **b.** <u>Clinical Chemistry</u>: The following CHECKED (X) parameters were examined.

	ELECTROLYTES		OTHER
Х	Calcium	Х	Albumin
Х	Chloride	Х	Creatinine*
	Magnesium	Х	Urea nitrogen*
Х	Phosphorus	Х	Total cholesterol
Х	Potassium	Х	Globulins
Х	Sodium	Х	Glucose
	ENZYMES	Х	Total bilirubin
Х	Alkaline phosphatase (ALP)	Х	Total protein
	Cholinesterase (ChE)	Х	Triglycerides
	Creatine phosphokinase		Serum protein electrophoresis
	Lactic acid dehydrogenase (LDH)	Х	Albumin globulin ratio (A/G Ratio, by calculation)
Х	Alanine aminotransferase (ALT/also SGPT)	Х	Bile acids
Х	Aspartate aminotransferase (AST/also SGOT)		
	Sorbitol dehydrogenase		
Х	Gamma glutamyl transferase (GGT)		
	Glutamate dehydrogenase		

Recommended for the pubertal assay in female rats based on guideline 890.1450.

c. <u>**Organ Weights and Histopathology:**</u> The following CHECKED (X) tissues were collected and weighed. The (XX) organs, in addition, were subjected to histological examination.

	UROGENITAL		OTHER
XX	Ovaries (paired, without oviducts)*+	XX	Thyroid*+
XX	Uterus*+	Х	Liver*
XX	Kidneys (paired)*+	Х	Adrenals (paired)*
		Х	Pituitary*

* Weights required based on guideline 890.1450

+ Histopathological examination required based on guideline 890.1450

All organs except the thyroid/trachea were weighed prior to fixation. Paired organs (kidneys, adrenals, and ovaries) were weighed together. The uterus was separated from the vagina and weighed. The uterus was weighed "wet" and then again following removal of the fluid in the lumen (blotted weight).

The ovaries (left or right not specified), uterus and kidneys were fixed in 10% buffered formalin, rinsed and stored in 70% ethanol prior to embedding. The thyroid was fixed in 10% buffered formalin for at least 24 hrs. Following fixation, the thyroid was dissected from the trachea. All collected tissues were routinely processed into paraffin blocks, sectioned, stained with hematoxylin and eosin, and examined microscopically.

Thyroid sections were subjectively evaluated for follicular cell height and colloid area, using a five point grading scale (1 = shortest/smallest; 5 = tallest/largest), and any abnormalities/lesions were noted. At least two sections of the thyroid were examined. Five random sections of an ovary were evaluated for follicular development and any abnormalities/lesions (such as atrophy). Uterine histology documented cases of uterine hyper- or hypotrophy as characterized by changes in uterine horn diameter and myometrial, stromal, or endometrial gland development. The stage of the estrous cycle of the female at the time of necropsy was evaluated.

II. RESULTS

- A. <u>Mortality</u>: One animal in the control group (Animal No. 24840-10) was sacrificed *in extremis* on PND 27 due to impairment of the right forelimb (due to possible mechanical injury). All other rats survived until scheduled sacrifice.
- **B.** <u>Clinical Signs of Toxicity</u>: Treatment-related clinical findings were limited to rales in 4/15 and 13/15 females in the 300 and 1000 mg/kg/day groups, respectively, approximately 4 hours post-dosing. This finding did not persist to the daily examinations. No other treatment-related clinical signs were noted during the 4-hour post-dosing or daily examinations at any dose level. Additional clinical signs noted during the study, including red material around the nose, occurred infrequently, at similar frequencies in the controls, and/or in a manner that was not dose-dependent.</u>
- C. <u>General Growth and Vaginal Opening</u>: Body weights, body weight gains, age at attainment of vaginal opening and weight at day of attainment are presented in Table 2. There were no treatment-related differences in age of attainment, body weight at vaginal opening, final body weights, or body weight gains in the treated groups relative to controls. One female each in the control and 300 mg/kg/day groups failed to attain vaginal opening.

The mean age at vaginal opening in the control group (36.4 days) exceeded the performance criteria maximum (35.62 days); however, the CV value (6.52%) was within the acceptable range (0-6.52%).

TABLE 2.	Gen	eral	Growth	and V	agina	l Op	ening (VO) ^a									
Parameter			Vehicle	Contro	bl		Glyp 100 mg	hosate /kg/day	V		Glyp 300 mg	hosate /kg/day	V		Glypl 1000 mg	hosate g/kg/da	Ŋ
Evaluated		N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)
Initial Body Weight (PND 22; g)	U	15	45.9	1.8	3.9	15	45.3	2.2	4.8	15	45.3	2.1	4.7	15	45.3	2.5	5.4
Weight at VO	U	14	119.6	12.6	10.6	15	119.2	16.3	13.6	15	125.1	15.6	12.4	15	117.4	16.8	14.3
(g)	Α	14	119.2	12.6	10.6	15	119.4	16.3	13.6	15	124.8	15.6	12.4	15	118.0	16.8	14.3
Final Body Weight (PND 42; g)	U	14	147.3	11.7	7.9	15	147.0	10.3	7.0	15	152.1	6.4	4.2	15	141.3	10.6	7.5
Final Body Weight (% of control)	U		N	A			-0.20				3.26				-4.07		
Body Weight Gain (g)	U	14	101.5	10.6	10.4	15	101.7	9.0	8.9	15	106.8	5.9	5.5	15	96.0	9.7	10.1
Age at VO	U	14	36.4	2.4	6.5	15	36.1	2.5	7.0	15	36.8	2.5	6.8	15	36.3	2.6	7.2
(PND)	А	14	36.5	2.4	6.5	15	36.1	2.5	7.0	15	36.8	2.5	6.8	15	36.3	2.6	7.2
Proportion unopened (#/N))		1/	15			0/	/15			1/	15			0/	15	

a Data were obtained from page 56 of the study report

U Unadjusted for body weight on PND 22

A Adjusted for body weight on PND 22

N Number of animals examined

SD Standard Deviation

CV Coefficient of Variation

NA Not applicable

D. <u>**Organ Weights:**</u> Organ weights at necropsy are presented in Table 3. No treatment-related effects were observed in the unadjusted, adjusted, or relative organ weights at any dose.

The control group means and CVs for all organ weights were within the acceptable ranges of the performance criteria.

TABLE 3.	Org	an W	eights a	it Necro	psy ^a														
Organ			Vehicle	e Contro	1		• •	bhosate g/kg/day				hosate g/kg/day				bhosate 1g/kg/day			
Organ		N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)		
Liver (g)	U	14	6.72	0.85	12.66	15	6.75	0.65	9.61	15	7.03	0.47	6.68	15	6.47	0.52	8.11		
	Α	14	6.70	0.85	12.66	15	6.76	0.65	9.61	15	7.01	0.47	6.68	15	6.50	0.52	8.11		
	R	14	4.55	0.32	7.07	15	4.58	0.22	4.78	15	4.62	0.20	4.43	15	4.58	0.18	4.02		
Kidneys (g)	U	14	1.17	0.10	8.88	15	1.16	0.12	10.3	15	1.17	0.10	8.53	15	1.14	0.10	8.96		
	А	14	1.16	0.10	8.88	15	1.16	0.12	10.3	15	1.17	0.10	8.53	15	1.15	0.10	8.96		
	R	14	0.79	0.05	5.85	15	0.79	0.05	6.25	15	0.77	0.05	6.34	15	0.81	0.06	7.01		
Pituitary	U	14	8.3	0.92	11.10	15	9.2	1.68	18.4	15	8.8	0.98	11.1	15	8.6	1.29	15.1		
(mg)	Α	14	8.2	0.92	11.10	15	9.2	1.68	18.4	15	8.8	0.98	11.1	15	8.7	1.29	15.1		
	R	14	5.6	0.59	10.47	15	6.2	0.98	15.8	15	5.8	0.69	11.9	15	6.1	0.90	14.8		
Adrenals	U	14	33.3	5.66	17.03	15	33.1	5.19	15.7	15	33.2	3.84	11.6	15	31.8	5.63	17.7		
(mg)	Α	14	33.2	5.66	17.03	15	33.2	5.19	15.7	15	33.1	3.84	11.6	15	31.9	5.63	17.7		
	R	14	22.5	3.26	14.47	15	22.5	3.61	16.0	15	21.8	2.44	11.2	15	22.5	3.72	16.5		
Ovaries	U	14	68.3	9.32	13.65	15	67.9	11.01	16.2	15	67.8	9.31	13.7	15	69.1	10.8	15.6		
(mg)	Α	14	67.9	9.32	13.65	15	68.0	11.01	16.2	15	67.7	9.31	13.7	15	69.6	10.8	15.6		
Uterus, wet	U	14	263.6	91.13	34.57	15	316.9	130.03	41.0	15	342.6	171.3	50.0	15	238.9	116.8	48.9		
(mg)	Α	14	262.5	91.13	34.57	15	315.6	130.03	41.0	15	343.7	171.3	50.0	15	238.6	116.8	48.9		
Uterus,	U	14	235.7	68.25	28.95	15	256.8	56.78	22.1	15	260.2	72.29	27.8	15	205.9	73.1	35.5		
blotted (mg)	Α	14	235.2	68.25	28.95	15	256.4	56.78	22.1	15	260.5	72.29	27.8	15	206.0	73.1	35.5		
Thyroid,	U	14	8.97	2.63	29.31	15	8.72	1.91	21.9	15	9.33	1.24	13.3	15	8.63	1.89	21.8		
fixed (mg)	Α	14	8.88	2.63	29.31	15	8.76	1.91	21.9	15	9.27	1.24	13.3	15	8.76	1.89	21.8		

a Data were obtained from page 57 of the study report.

U Unadjusted for body weight on PND 22

A Adjusted for 100 g body weight on PND 22

N Number of animals examined

SD Standard Deviation

CV Coefficient of Variation

R Organ-to-body weight ratio (relative to body weight)

E. <u>Estrous Cyclicity</u>: Estrous cycle data are provided in Table 4. There were no statistically significant differences in mean age at first vaginal estrus, mean cycle length, or percent cycling. The cycle status at necropsy was similar among groups. The percent of females regularly cycling was lower (p<0.05) at 300 and 1000 mg/kg/day (40 and 60%, respectively) compared to the controls (75%). However, a large number of females (9-10 per group) in these dose groups had insufficient estrous cycle data, which resulted in only 5 females/dose available for evaluation of estrous cyclicity. Therefore this finding was considered to be unrelated to treatment.

	· ·	licity ^a Mean Age at	Mean Cycle		Regularly	Cycle St	tatus at Neci	opsy (# H	Females)
Treatment Groups	Ν	First Vaginal Estrus (PND)	Length (days)	Cycling (%)	Cycling (%)	Diestrus	Proestrus	Estrus	Not Cycling
Vehicle	13	36.5	5.0	100	75	9	1	3	0
Glyphosate 100 mg/kg/day	15	37.5	4.8	100	80	8	1	6	0
Glyphosate 300 mg/kg/day	14	37.8	5.0	100	40*	7	2	5	0
Glyphosate 1000 mg/kg/day	15	38.3	5.0	100	60*	11	0	4	0

a Data were obtained from pages 57 and 58 of the study report.

N Number of animals

* Significantly different from controls at p<0.05.

F. <u>Clinical Chemistry and Hormone Levels</u>: Mean clinical chemistry and hormone levels are presented in Table 5. In addition, the study report provided historical control ranges on pages 353-355 for the clinical chemistry parameters, but not hormone measures. There were no treatment-related effects on serum T₄ or TSH levels at any dose.

No adverse treatment-related effects on any clinical chemistry parameter were observed at any dose. The statistically significant differences from controls noted in AST, ALP, potassium, chloride, and phosphorous levels were considered unrelated to treatment and/or not adverse because they were minor, within the historical control range, the change in direction was one not normally associated with a toxic effect, unrelated to dose, and/or there were no corroborative histopathological findings in the associated organs.

It is noted that 11/20 of the control clinical chemistry means are outside the historical control range for the performing laboratory.

Parameter		Vehicle	e Contro)l			bhosate g/kg/day				hosate g/kg/day				hosate g/kg/day	/
rarameter	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	Ν	Mean	SD	CV (%)
			02	(70)	- 1		roid Hori					(70)				(70)
Total T ₄ (µg/dL)	14	4.12	0.54	13.1	15	4.38	0.47	10.6	15	4.64	0.68	14.7	15	3.76	0.66	17.3
TSH (ng/mL)	14	3.74	1.92	51.2	14	3.86	1.63	42.1	15	3.85	2.17	56.5	14	2.69	1.27	47.
						Clin	ical Cher	nistry								
A/G Ratio	14	3.08	0.49	15.9	15	3.17	0.36	11.2	15	2.92	0.34	11.6	15	2.88	0.30	10.
Albumin (g/dL)	14	4.2	0.28	6.81	15	4.2	0.16	3.82	15	4.0	0.27	6.66	15	4.2	0.26	6.2
ALP (U/L)	14	252	30.8	12.2	15	260	51.1	19.7	15	283	38.1	13.5	15	303* (†20)	50.0	16.
ALT (U/L)	14	126	31.4	24.9	15	102	17.2	16.9	15	113	11.6	10.3	15	126	42.8	34.
AST (U/L)	14	506	164.6	32.5	15	366* (↓28)	89.7	24.5	15	374* (↓26)	39.7	10.6	15	383* (↓24)	109.6	28.
Bile Acids (µmol/L)	14	39.4	30.21	76.7	15	26.0	11.85	45.6	15	41.2	28.59	69.3	15	38.4	24.23	63.
Calcium (mg/dL)	14	11.2	0.31	2.81	15	11.3	0.26	2.28	15	11.3	0.39	3.41	15	11.2	0.57	5.0
Chloride (mEq/L)	14	100	1.6	1.6	15	101	1.0	1.0	15	100	1.7	1.7	15	103* (†3)	2.3	2.2
Cholesterol (mg/dL)	14	87	13.1	15.1	15	90	14.1	15.7	15	90	15.0	16.7	15	92	11.2	12.
Creatinine (mg/dL)	14	0.1	0.05	35.95	15	0.2	0.05	31.7	15	0.1	0.05	35.2	15	0.2	0.05	26.
GGT (U/L)	14	0.3	0.26	98.01	15	0.1	0.00	0.00	15	0.1	0.00	0.00	15	0.1	0.00	0.0
Globulin (g/dL)	14	1.4	0.19	13.64	15	1.3	0.15	11.2	15	1.4	0.15	11.0	15	1.5	0.15	9.9
Glucose (mg/dL)	14	147	9.6	6.5	15	151	8.0	5.3	15	148	7.8	5.3	15	146	10.7	7.
Phosphorous (mg/dL)	14	11.7	1.00	8.56	15	10.8* (↓8)	0.59	5.44	15	11.4	0.84	7.35	15	11.8	0.58	4.9
Potassium (mEq/L)	14	8.08	0.98	12.09	15	7.00* (↓13)	0.49	7.0	15	7.11* (↓12)	0.56	7.85	15	7.55	0.64	8.4
Sodium (mEq/L)	14	137	1.6	1.2	15	139	1.5	1.1	15	139	1.8	1.3	15	138	3.2	2.
Total Bilirubin (mg/dL)	14	0.06	0.02	37.18	15	0.06	0.013	23.7	15	0.06	0.02	28.7	15	0.06	0.02	35.
Total Protein (g/dL)	14	5.6	0.35	6.23	15	5.6	0.22	4.02	15	5.4	0.32	5.85	15	5.6	0.32	5.6
Triglycerides (mg/dL)	14	70	16.1	23.0	15	63	23.1	36.8	15	62	16.0	25.6	15	58	16.7	29
Urea Nitrogen (mg/dL)	14	14.8	3.00	20.25	15	15.1	2.32	15.3	15	14.7	1.92	13.0	15	14.4	2.10	14

a Data were obtained from pages 59 and 60 of the study report. Percent differences from controls, calculated by the reviewers, are included in parentheses.

N Number of animals examined

SD Standard Deviation

CV Coefficient of Variation

* Significantly different from controls at p<0.05.

G. <u>**Histopathology:**</u> The incidences of histopathological findings of the thyroid gland are presented in Table 6. There were no treatment-related microscopic findings in the thyroid, ovaries, uterus, or kidneys at any dose.

TABLE 6. Incid	ence of Hist	topathologic	al Lesions of	f the Thyroid	l Gland ^a			
Treatment		Colloid Area	l	Follicular Cell Height				
Groups	Grade ^b	Incie	dence	Grade ^b	Incidence			
	Graue	0	Е	Grade	0	E		
	1	0	14	1	5	14		
	2	0	14	2	9	14		
Vehicle Control	3	1	14	3	0	14		
	4	10	14	4	0	14		
	5	3	14	5	0	14		
	1	0	15	1	7	15		
Glyphosate 100 mg/kg/day	2	0	15	2	8	15		
	3	1	15	3	0	15		
	4	8	15	4	0	15		
	5	6	15	5	0	15		
	1	0	15	1	6	15		
Clymbosoto	2	0	15	2	9	15		
Glyphosate 300 mg/kg/day	3	2	15	3	0	15		
500 mg/kg/uay	4	8	15	4	0	15		
	5	5	15	5	0	15		
	1	0	15	1	7	15		
Glyphosate 1000 mg/kg/day	2	0	15	2	8	15		
	3	2	15	3	0	15		
	4	9	15	4	0	15		
	5	4	15	5	0	15		

a Data were obtained from pages 113 of the study report.

b Thyroid histopathology is graded on a 1-5 scale: Follicular cell height, 1 =lowest, 5 = highest; and Colloid area, 1 =most colloid, 5 = least colloid.

O Number Observed

E Number Examined

The incidence of histopathological findings of the ovaries, uterus and kidneys are presented in Table 7. The ovaries appeared normal histopathologically. There were no microscopic findings in the uterus related to treatment with the test material. Single occurrences of findings in the kidneys (cyst, mild pelvis dilatation, and mild chronic inflammation) were considered to be incidental.

	Dose Level (mg/kg/day)								
Findings	Vehicle Control		• -	nosate /kg/day	Glypl 300 mg	10sate /kg/day	Glyphosate 1000 mg/kg/day		
	# Observed	# Examined	# Observed	# Examined	# Observed	# Examined	# Observed	# Examined	
Ovaries									
Unremarkable	14	14	15	15	15	15	15	15	
Uterus									
Unremarkable	14	14	15	15	15	15	15	15	
Kidney									
Unremarkable	13	14	15	15	13	15	12	15	
Cyst	1	14	0	15	1	15	1	15	
Dilatation, pelvis mild	0	14	0	15	1	15	1	15	
Inflammation, chronic, mild	0	14	0	15	0	15	1	15	

a Data were obtained from pages 103-106 of the study report.

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATORS' CONCLUSIONS</u>: The Investigators concluded that there was no evidence of any direct test substance-related estrogenic or anti-estrogenic effects, nor was there any evidence of direct test substance-related effects on pubertal development or thyroid function in the juvenile/peripubertal female rat following oral administration of glyphosate at dose levels up to 1000 mg/kg/day (limit dose).
- **B.** <u>AGENCY COMMENTS</u>: One animal in the control group was sacrificed *in extremis* on PND 27 due to impairment of the right forelimb; all other animals survived until scheduled sacrifice. Treatment-related clinical signs were limited to rales in 4/15 and 13/15 females in the 300 and 1000 mg/kg/day groups, respectively, approximately 4 hours post-dosing, but this finding did not persist to the daily examinations. There were no treatment-related differences in any general growth or vaginal opening parameters relative to controls. One female each in the control and 300 mg/kg/day groups failed to attain vaginal opening. There were no statistically significant differences in any estrous cyclicity parameters, and the cycle status at necropsy was similar among all groups. Serum T₄ and TSH were not affected by treatment, and no adverse treatment-related effects on any clinical chemistry parameter were observed at any dose. There were no treatment-related microscopic findings in the thyroid, ovaries, uterus, or kidneys at any dose.
- C. <u>STUDY DEFICIENCIES</u>: The following minor deficiency was noted that is not considered to have had an adverse impact on the results, interpretation or conclusions of this study:
 - The mean age at vaginal opening in the control group (36.4 days) exceeded the recommended performance criteria maximum (35.62 days).

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1500, Male Pubertal Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-74-2012 (MRID 48671313)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	David a. M. Euro
David A. McEwen, B.S.	Date:	7/03/2012
Secondary Reviewer:	Signature:	A-M laterberg
Scott D. Studenberg, Ph.D., D.A.B.T.	Date:	7/08/2012
Program Manager:	Signature:	Jack Q. Eury
Jack D. Early, M.S.	Date:	7/13/2012
Quality Assurance: Steven Brecher, Ph.D., D.A.B.T.	Signature: Date:	Stam bial 7/13/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

Primary Reviewer:Anwar Y. Dunbar, Ph.D.SRisk Assessment Branch 1, Health Effects Division (7509P)Secondary Reviewer:John Liccione, Ph.D.Risk Assessment Branch 1, Health Effects Division (7509P)

Signature:	Ann y. Dah
Date:	05-27-15
Signature:	X Int
Date:	1019/18
	Template version 08/2011

DATA EVALUATION RECORD

STUDY TYPE: Male Pubertal Assay; OCSPP 890.1500

PC CODE: 417300

TXR #: 0053233

<u>DP BARCODE</u>: D401747

<u>CAS No</u>: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate technical (95.93% a.i.)

<u>SYNONYMS</u>: N-(phosphonomethyl)glycine

- **<u>CITATION</u>:** Stump, D.G. (2012) A Pubertal Development and Thyroid Function Assay of Glyphosate Administered Orally in Intact Juvenile/Peripubertal Male Rats. WIL Research Laboratories, LLC, Ashland, OH. Laboratory Project ID: WIL-843005, April 10, 2012. MRID 48671313. Unpublished.
- **SPONSOR:** Joint Glyphosate Task Force, LLC. c/o Data Group Management, 8325 Old Deer Trail, Raleigh, NC

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In a Male Pubertal Assay (MRID 48671313), 15 Crl:CD(SD) Sprague-Dawley rats/dose group were treated daily via oral gavage (5 mL/kg) with glyphosate technical (95.93% a.i., Lot #: GLP-1103-21149-T) in 0.5% methylcellulose at doses of 0, 100, 300 or 1000 mg/kg/day (limit dose) from post-natal day (PND) 23 to 53. Animals were examined for preputial separation (PPS) daily beginning on PND 30, and age and weight at day of attainment were recorded. Following sacrifice on PND 53, blood was taken for total thyroxine (T₄), testosterone, thyroid stimulating hormone (TSH), and clinical chemistry analysis. The hormones were analyzed by radioimmunoassay (RIA) or chemiluminescence. Weights were recorded for the liver, adrenal glands, thyroid, pituitary, and urogenital organs, and microscopic examinations were performed on the thyroid, kidneys, right testis and epididymides.

One male in the 1000 mg/kg/day group was found dead prior to dosing on PND 24; no significant clinical or macroscopic findings were observed in this animal. All other rats survived until scheduled sacrifice. Treatment-related clinical findings were limited to rales in 9/15 and 14/15 males in the 300 and 1000 mg/kg/day groups, respectively, approximately 4 hours post-dosing. This finding persisted in the daily examinations in 7/15 males at 1000 mg/kg/day throughout the study.

Treatment-related decreases in overall (PND 23-53) body weight gains were observed at 300 mg/kg/day (18%, not significant; NS) and 1000 mg/kg/day (112%, p<0.01). On PND 53, Page 243 of 278

final body weights in the 300 and 1000 mg/kg/day groups were decreased (p<0.05) by 7-10%. A treatment-related delay in the mean age at attainment of complete PPS was noted at 1000 mg/kg/day (48.0 days) compared to controls (45.9 days). However, it was determined that the delay in attainment of complete PPS at this dose was a result of the treatment-related decrease in body weight, rather than a direct anti-androgenic effect.

No compound-related effects on organ weights were observed at any dose. No treatment-related effects on T_4 , TSH, or testosterone levels were observed at any dose. T_4 and TSH levels were lower than the control group in all treated groups and testosterone was lower at 300 and 1000 mg/kg/day. However, these changes were not statistically significant and were not associated with any histopathological findings. At 1000 mg/kg/day, the increases (p<0.01) in ALT (also at 300 mg/kg/day), sodium, albumin, ALP, AST, chloride, phosphorous, and total protein, and the decrease in urea nitrogen were considered to be related to treatment.

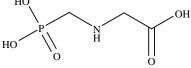
At 1000 mg/kg/day, there was a slight increase in the number of animals with colloid area Grade 4 (5 treated vs. 1 control) and Grade 5 (1 treated vs. 0 controls). There were no treatment-related effects on follicular cell height at any dose compared to controls. There were no treatment-related findings in the testes, epididymides or kidneys.

The highest dose tested showed evidence of overt toxicity based on the decreases in terminal body weight, clinical signs, and mortality at 1000 mg/kg/day; the dose concentrations used in the study are considered adequate.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for a Male Pubertal Assay (OCSPP 890.1500).

<u>COMPLIANCE</u>: Signed and dated Data Confidentiality, GLP Compliance, and Quality Assurance statements were provided.

I. MATERIALS AND METHODS


A. MATERIALS

1.

Test Facility:	WIL Research Laboratories, LLC
Location:	Ashland, OH
Study Director:	D.G. Stump
Other Personnel:	C.A. Picut, Pathologist
	M.E. Haubenstriker, Analytical Chemist
	L. Freshwater, Statistics
Study Period:	August 23, 2011 – April 10, 2012

2. <u>Test Substance</u>: Glyphosate

Description: Source: Lot/Batch #: Purity: Stability: CAS #: Structure: White powder Monsanto (St. Louis, MO) GLP-1103-21149-T (exp. March 9, 2012) 95.93% (dried) Stable in 0.5% methylcellulose for up to 15 days at room temperature 1071-83-6 HO

3. <u>Vehicle:</u> 0.5% Methylcellulose in deionized water

4. <u>Test Animals</u>

Species:	Rat	
Strain:	Crl:CD(SD) Sprague-Da	wley
Age/Weight at Study		
Initiation:	PND 23 /44.3 – 56.6 g n	nales only
Source:	Charles River Laborator	ies (Portage, MI)
Housing:	2-3/cage in plastic cages	with heat treated laboratory-grade pine shavings for bedding
Diet:	Harlan Laboratories 201	6CM Teklad Global 16% protein rodent diet, ad libitum
	Phytoestrogen content av	verage 11 ppm total isoflavones (genistein+daidzein+glycitein)
Water:	Municipal water, reverse	e-osmosis filtered (on site), ad libitum
Environmental	Temperature:	21.2-22.2 °C
Conditions:	Humidity:	40.1-58.9%
	Air changes:	$\geq 10/hr$
	Photoperiod:	14 hrs light/ 10 hrs dark

B. STUDY DESIGN

- 1. <u>In-Life Dates</u>: Start: September 29, 2011 End: October 30, 2011
- <u>Mating</u>: Time-mated pregnant dams were received from the supplier on gestation day (GD)
 The day evidence of mating was confirmed as designated GD 0. To reduce variability, litters were culled to 5 pups/sex (when possible) on PND 4. The female offspring were used for a concurrently submitted female pubertal assay (MRID 48671315).
- **3.** <u>Animal Assignment</u>: Following weaning on PND 21, animals were randomly assigned (stratified by weight in a block design) to the test groups noted in Table 1. Littermates were not assigned to the same treatment group.

TABLE 1. Study Design ^a		
Test group	Dose (mg/kg/day)	# of Males
Control	0	15
Low	100	15
Mid	300	15
High	1000	15

a Data were obtained from page 26 of the study report.

- 4. <u>Dose Selection Rationale</u>: The dose levels for the current study were selected based on the results of a 7-day oral gavage range-finding study (WIL Study No. WIL-843006, data not provided) in juvenile male rats. The animals (5/dose) were administered glyphosate daily via oral gavage from PND 23-29 at dose levels of 200, 500, and 1000 mg/kg/day. At 1000 mg/kg/day, one male was found dead. No treatment-related effects were observed in clinical observations, body weights, or body weight gains at any dose level. Slightly lower food consumption was noted at 1000 mg/kg/day. Based on these results, dose levels of 100, 300, and 1000 mg/kg/day (limit dose) were selected for this male pubertal assay.
- 5. Dose Preparation and Analysis: Dose formulations were prepared approximately weekly by mixing appropriate amounts of test substance with 0.5% methylcellulose in deionized water. It was stated that analyses to demonstrate homogeneity and stability of the test substance in formulations for up to 15 days of room temperature storage at concentrations of 1 and 200 mg/mL (which bracketed those used in the current study) were conducted in a previous study (Haubenstricker, 2011, WIL-843004); however, no data were provided. Concentration of the test material as administered to the study animals was assessed from the middle stratum of each dosing formulation prepared during the in-life phase of the study. Additionally, the reviewers derived the homogeneity (% RSD) of the samples collected for concentration analysis.

Results of Dose Analysis

Homogeneity (% RSD): 0.04-1.9%

Stability (% of initial): Data not provided

Concentration (% of nominal): 97.5-114%

The analytical data indicated that the mixing procedure was adequate and that the variation between nominal and actual dosage to the animals was acceptable.

- 6. <u>Dosage Administration</u>: All doses were administered once daily by gavage from PND 23 through PND 53, in a volume of 5mL/kg of body weight. Dosing was performed between 0700 and 0900 hours daily.
- 7. <u>Statistics</u>: Statistics were conducted by BioSTAT Consultants, Inc. using SAS® software. Data statistically analyzed included the organ weights, organ weight to body weight ratio (liver, kidneys, pituitary, and adrenal glands), daily body weights, cumulative body weight gain, serum chemistries, hormones, and weight and age at PPS. When an animal did not attain PPS, PND 54 (last Study Day + 1) and terminal body weight were used as the age and body weight at PPS, respectively. Gamma glutamyltransferase values under range were assigned a value of 0.1 (half the LLQ) for statistical analysis and reporting.

Endpoints were tested for homogeneity of variance using Levene's test. If that test was significant (p=0.01), then a log or square root transformation was applied to the raw data; if the test was still significant then a nonparametric test was used to analyze the data. If the variances were homogeneous then an analysis of variance (ANOVA) was conducted. The statistical model contained a factor for treatment group and a blocking factor based on the time of study start. A two-sided Dunnett's test was conducted, regardless of the outcome of the ANOVA, looking for significant differences in the test article groups when compared with the vehicle control. If the variances were not homogeneous then the nonparametric Kruskal-Wallis test was used, ignoring the blocking factor, followed by Dunn's test, to compare each of the test article groups with the vehicle control. Since these were preplanned pairwise comparisons, Dunn's test was conducted regardless of the outcome of the Kruskal-Wallis test. The tests were two-sided (p=0.05), looking for significant differences from the vehicle control. In addition, organ weights, age and weight at PPS were subject to the following analyses if they met the homogeneity of variance criteria: 1) Analysis of covariance (ANCOVA) with Dunnett's test, using body weight at PND 21 as the covariate; 2) linear trend test using the ANOVA model; and 3) linear trend test using the ANCOVA model.

Histopathology findings presented as a graded response were analyzed with pairwise Mann-Whitney U tests. The tests were one-sided at p=0.05 for increased severity. The tests were two-sided for graded responses presented on a Grade 1-5 scale at p=0.05 for increased or decreased severity.

C. <u>METHODS</u>

- 1. <u>Mortality and Clinical Examinations</u>: All animals were examined twice daily for mortality and moribundity. Clinical examinations were conducted daily (prior to dosing) through the day of euthanasia. Additionally, animals were examined approximately 4 hours post-dosing for clinical signs.
- 2. <u>Body Weight</u>: Animals were weighed on the day of randomization, daily prior to dosing and the day of euthanasia. Mean body weight changes were calculated for each corresponding interval and for the overall treatment period (PND 23-53).

- **3.** <u>Preputial Separation (PPS)</u>: Beginning on PND 30, all animals were examined daily for onset of PPS. The appearance of a partial or a persistent thread of tissue between the glans and prepuce was recorded. Age and weight on the day of completion of PPS were recorded.
- 4. <u>Sacrifice and Pathology</u>: On the day before euthanasia, rats were moved to a holding room separate from where the necropsies were to be performed. Dosing was performed in the holding room on the day of termination and the rats were moved to the necropsy room one at a time for terminal procedures. Approximately 2 hours following dosing, animals were sacrificed by decapitation without anesthesia and all sacrifices were completed by 1300 hours to minimize hormonal variability due to normal diurnal fluctuation. Immediately following decapitation, trunk blood samples were taken for T₄, TSH, testosterone, and serum chemistry analyses. The hormone samples were analyzed fresh or stored frozen ($\leq -20^{\circ}$ C) for subsequent analyses.
- a. <u>Hormone Analysis</u>: Total T₄ and testosterone were analyzed using an electrochemiluminescent assay on the Cobas e411 (Roche Diagnostics, Indianapolis, IN) and TSH levels were analyzed using an [¹²⁵ I] rTSH kit (Izotop, Institute of Isotopes Ltd., Budapest, Hungary). For both assays, multiple quality control samples were run prior to analysis.

	ELECTROLYTES		OTHER
Х	Calcium	Х	Albumin
Х	Chloride	Х	Creatinine*
	Magnesium	Х	Urea nitrogen*
Х	Phosphorus	Х	Total cholesterol
Х	Potassium	Х	Globulins (by calculation)
Х	Sodium	Х	Glucose
	ENZYMES	Х	Total bilirubin
Х	Alkaline phosphatase (ALK)	Х	Total protein
	Cholinesterase (ChE)	Х	Triglycerides
	Creatine phosphokinase		Serum protein electrophoresis
	Lactic acid dehydrogenase (LDH)	Х	A/G ratio (by calculation)
Х	Alanine aminotransferase (ALT/also SGPT)	Х	Bile acids
Х	Aspartate aminotransferase (AST/also SGOT)		
	Sorbitol dehydrogenase		
Х	Gamma glutamyl transferase (GGT)		
	Glutamate dehydrogenase		

b. <u>Clinical Chemistry</u>: The following CHECKED (X) parameters were examined.

^k Recommended for the pubertal assay in male rats based on Guideline 890.1500.

c. <u>**Organ Weights and Histopathology:**</u> The following CHECKED (X) tissues were collected and weighed. The (XX) organs, in addition, were subjected to histological examination.

	UROGENITAL		OTHER
XX	Testes (left and right separately)*+	XX	Thyroid*+
XX	Epididymides (left and right separately)*+	Х	Liver*
Х	Seminal vesicle plus coagulating glands (with fluid)*	Х	Adrenals (paired)*
Х	Ventral prostate*	Х	Pituitary*
Х	Dorsolateral prostate*		
Х	Levator ani-bulbocavernosus (LABC) muscle complex*		
XX	Kidneys (paired)*+		

* Weights required based on guideline 890.1500

+ Histopathological examination required based on guideline 890.1500

The right testis, right epididymis and kidneys were weighed prior to fixation. Following weighing, the testis and epididymis were fixed in Bouin's solution (duration of fixation not specified). The thyroid (with parathyroid) was collected with the trachea and fixed in 10% buffered formalin for at least 24 hrs. Following fixation, the thyroid was dissected free of the trachea and weighed. All collected tissues were routinely processed into paraffin blocks, sectioned, stained with hematoxylin and eosin (additionally, PAS was used for the testes and epididymides), and examined microscopically. Thyroid sections were subjectively evaluated for follicular cell height and colloid area using a five point grading scale (1 = shortest/smallest; 5 = tallest/largest), and any abnormalities/lesions noted. Two sections from the thyroid were examined in order to obtain representative samples of the thyroid tissue.

II. RESULTS

- A. <u>Mortality</u>: One male in the 1000 mg/kg/day group (Animal No. 24843-05) was found dead prior to dosing on PND 24. This death following a single dose was considered to be related to treatment because no deaths were observed in the control group, lower body weight gain was observed in this group following the first day of treatment, and mortality was observed in the 7-day range-finding study at 1000 mg/kg/day. All other animals survived until scheduled sacrifice.
- **B.** <u>Clinical Signs of Toxicity</u>: Treatment-related clinical findings were limited to rales in 9/15 and 14/15 males in the 300 and 1000 mg/kg/day groups, respectively, approximately 4 hours post-dosing (Table 2). This finding persisted to the daily examinations in 7/15 males at 1000 mg/kg/day. No other treatment-related clinical signs were noted during the 4-hour post-dosing or daily examinations at any dose level. Additional clinical signs noted during the study, including impaired use of forelimb, red material around the nose, yellow material around the urogenital area, and marked struggling during the dosing procedure, occurred infrequently, at similar frequencies in the controls, and/or in a manner that was not dose-dependent.</u>

TABLE 2. Incidence of Clinical Observations ^a														
	Dose Level (mg/kg/day)													
Observation	Vehicle	Control	Glypł 100 mg			hosate /kg/day	Glyphosate 1000 mg/kg/day							
# Observed # Examined														
Daily Observations														
No clinical observations	464 ^b /15	15	463 ^b /15	15	455 ^b /15	15	415 ^b /15	15						
Found dead	0	15	0	15	0	15	1	15						
Rales	0	15	0	15	1	15	20 ^b /7	15						
4-Hours Post-dosing														
No clinical observations 448 ^b /15 15 445 ^b /15 15 426 ^b /15 15 343 ^b /15 15														
Rales	0	15	0	15	13 ^b /9	15	75 ^b /14	15						

a Data were extracted from pages 64 & 65 of the study report

b Total number of observations.

C. <u>General Growth and Preputial Separation</u>: Body weights, body weight gains, age at attainment of PPS and weight at day of PPS are presented in Table 3. Treatment-related decreases in overall (PND 23-53) body weight gains were observed at 300 (\downarrow 8%, not significant) and 1000 mg/kg/day (\downarrow 12%, p<0.01). On PND 53, final body weights in the 300 and 1000 mg/kg/day groups were decreased (p<0.05) by 7-10%. The control group body weight at PND 21 (44.7 g) was slightly below the performance criteria acceptable value of 45.472 g; however, the % CV value was within the acceptable range.

A treatment-related delay in the mean age at attainment of complete PPS was noted at 1000 mg/kg/day (48.0 days) compared to controls (45.9 days). It was reported that Ashby (2000)¹ demonstrated that body weight differences of approximately 12% could delay balanopreputial separation by 1-2 days. The delay observed at 1000 mg/kg/day occurred at a dose that produced a 10% lower final body weight. Additionally, mean body weight at attainment of PPS was similar to controls in all treated groups. Furthermore, it was stated that if the test material was producing an anti-androgenic response, the testosterone level in the 1000 mg/kg/day group would have been expected to be higher than the control group. However, the testosterone level at 1000 mg/kg/day (1.57 ng/mL) was lower than the control group (2.86 ng/mL). Based on these findings, it was determined that the delay in attainment of complete PPS at 1000 mg/kg/day was a result of the treatment-related decrease in body weight, rather than a direct anti-androgenic effect.

The CV value for the body weight at attainment of PPS (9.77%) in the control group was above the acceptable performance criteria range (7.57%). However, the mean weight at attainment of PPS and the mean and CV values for age of attainment of PPS were within the acceptable ranges.

TABLE 3.	Jen		rowth a		13		· · ·	/			~ -				~ -			
Parameter Evaluated		Vehicle Control					Glyphosate 100 mg/kg/day				Glyph 300 mg/			Glyphosate 1000 mg/kg/day				
		N	Mean	SD	CV (%)	N	Mean	SD	CV (%) 6.66	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	
Initial Body Weight (PND 23; g)	Veight U		51.7	2.48	4.79	15	50.8	3.38		15	50.3	3.42	6.79	15	50.8	2.91	5.73	
Weight at	U	15	216.8	21.2	9.77	15	227.1	22.6	9.96	15	213.1	18.4	8.64	14	214.6	26.2	12.2	
PPS (g)	Α	15	216.5	21.2	9.77	15	226.9	22.6	9.96	15	213.1	18.4	8.64	14	214.9	26.2	12.2	
Final Body Weight (PND 53; g)	U	15	273.1	14.0	5.14	15	276.3	25.4	9.18	15	255.0* (↓7)	22.0	8.64	14	244.8** (↓10)	23.2	9.47	
Final Body Weight U (% of control)			N	A			1				-7				-10			
Body Weight Gain (g)	U	15	221.4	13.9	6.30	15	225.6	24.4	10.8	15	204.7 (↓8)	19.8	9.69	14	194.0** (↓12)	21.6	11.1	
Age at PPS	U	15	45.9	2.17	4.72	15	46.9	2.42	5.16	15	47.4	3.07	6.47	14	48.0	1.66	3.47	
(PND)	Α	15	45.9	2.17	4.72	15	46.8	2.42	5.16	15	47.5	3.07	6.47	14	47.9	1.66	3.47	
Proportion unseparated (#/N)		0/15				0/15					1/1	5		0/14				

a Data were obtained from page 59 of the study report. Percent difference from control (calculated by reviewers) is included in parentheses.

U Unadjusted for body weight on PND 23

A Adjusted for body weight on PND 23

N Number of animals examined

SD Standard Deviation

CV Coefficient of Variation

NA Not applicable

* Significantly different from controls at p<0.05.

** Significantly different from controls at p<0.01.

D. <u>Organ Weights</u>: Organ weights at necropsy are presented in Table 4. No compoundrelated effects on organ weights were observed at any dose. At 1000 mg/kg/day, the decreases (p<0.05) noted in absolute liver (\downarrow 15%), pituitary gland (\downarrow 16%), LABC (\downarrow 16%), ventral prostate (\downarrow 23%), and seminal vesicle with fluid (\downarrow 19%) and without fluid (\downarrow 16%) weights were considered to be secondary to decreased body weights, because there were no histologic findings in any tissues. Likewise, the decreased (p<0.05) absolute liver weight (\downarrow 10%) noted at 300 mg/kg/day was considered to be secondary to decreased body weights. The decrease in dorsolateral prostate weight (\downarrow 14%, p<0.05) noted at 300 mg/kg/day was unrelated to dose.

The mean control thyroid (13.73 mg) and kidney weights (1.93 g) were below the performance criteria minimum acceptable values (14 mg and 2.242 g, respectively), but were within the laboratory's historical control ranges for rats of this age, and the CV values were within the acceptable range.

N Mean SD C/0 N Mean SD C/0 N Mean SD C/0 iver (g) U 15 12.69 1.06 8.38 15 13.09 1.56 11.94 15 11.415° 1.51 13.20 14 10.77° (1.5) 1.51	Organ		Vehicle Control					Glyphosate 100 mg/kg/day				• •	hosate g/kg/day	Glyphosate 1000 mg/kg/day				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			N	Mean	SD		N	Mean	SD		N				N			CV (%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Liver (g)	U	15	12.69	1.06	8.38	15	13.09	1.56	11.94	15	. –	1.51	13.20	14		1.51	13.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		А	15	12.67	1.06	8.38	15	13.12	1.56	11.94	15	11.42*	1.51	13.20	14	10.82*	1.51	13.99
		R	15	4.64	0.26	5.53	15	4.73	0.287	6.060	15		0.27	6.091	14		0.31	7.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kidneys (g)																	12.76
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Α	15	1.92	0.15	7.57	15	1.99	0.259	13.02	15	1.83	0.22	12.17	14	1.84	0.23	12.76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R	15	0.71	0.04	6.08	15	0.72	0.043	6.064	15		0.05	6.949	14	0.74	0.04	5.24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pituitary (mg)	U	15	10.9	1.14	10.4	15	10.5	1.50	14.27	15	10.0	1.36	13.62	14		1.71	18.59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		А	15	10.9	1.14	10.4	15	10.5	1.50	14.27	15	9.9	1.36	13.62	14		1.71	18.59
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R	15	4.0	0.41	10.3	15	3.8	0.48	12.50	15	3.9	0.46	11.88	14	3.8	0.53	13.98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Adrenals (mg)	U	15	45.6	7.28	16.0	15	46.8	6.76	14.45	15	41.7	6.39	15.35	14	41.4	5.02	12.12
$ \begin{array}{c} \begin{aligned} \\ \mbox{escile} + CG, \\ \mbox{with fluid} (mg) \end{array} \label{eq: 15} 630.0 \\ \mbox{Mill} 15 \\ \mbox{escile} + CG, \\ \mbox{with fluid} (mg) \end{array} \label{eq: 15} 630.0 \\ \mbox{Mill} 15 \\ \mbox{escile} + CG, \\ \mbox{with fluid} (mg) \end{array} \label{eq: 15} 627.1 \\ \mbox{Mill} 106 \\ \mbox{16.8} 15 \\ \mbox{621.1 } 621.2 \\ \mbox{Mill} 140.9 \\ \mbox{22.73} 15 \\ \mbox{543.3 } 136.8 \\ \mbox{25.08} 14 \\ \mbox{518.6^*} \\ \mbox{518.6^*} \\ \mbox{51.6^*} \\ \mbox{52.4 } 16. \\ \mbox{Mill} 116 \\ \mbox{15} 387.5 \\ \mbox{67.84} 17.51 \\ \mbox{17.51 } 15 \\ \mbox{344.9 } 59.80 \\ \mbox{17.34 } 14 \\ \mbox{323.8^*} \\ \mbox{52.4 } 16. \\ \mbox{Mill} 161 \\ \mbox{326.8^*} \\ \mbox{16.1 } 123.14 \\ \mbox{15} 387.5 \\ \mbox{67.84 } 17.51 \\ \mbox{15} 384.9 \\ \mbox{59.80 } 17.34 \\ \mbox{14} 14 \\ \mbox{325.8^*} \\ \mbox{17.34 } 14 \\ \mbox{323.8^*} \\ \mbox{52.4 } 16. \\ \mbox{Mill} 15 \\ \mbox{326.8^*} \\ \mbox{16.1 } 123.14 \\ \mbox{15} 343.9 \\ \mbox{59.80 } 17.34 \\ \mbox{14.4 } \\\mbox{326.8^*} \\ \mbox{16.1 } 123.14 \\ \mbox{15} 236.3 \\ \mbox{44.33 } 18.76 \\ \mbox{14} \\ \mbox{14} \\ \mbox{14.4 } \\\mbox{16.2 } 201.2^* \\ \mbox{16.0 } 23. \\ \mbox{16.0 } 2$		Α	15	45.4	7.28	16.0	15	46.9	6.76	14.45	15	41.5	6.39	15.35	14	41.7	5.02	12.12
$ \begin{array}{c} \mbox{rescicle} + CG, \\ \mbox{vith fluid (mg)} & A \\ \mbox{if fluid (mg)} \\ \hline A \\ if flui$		R	15	16.7	2.44	14.7	15	16.9	1.86	10.95	15	16.3	1.78	10.93	14	16.9	1.68	9.91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Seminal vesicle + CG,	U	15	630.0	106	16.8	15	619.8	140.9	22.73	15	545.5	136.8	25.08	14		88.2	17.19
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	with fluid (mg)	А	15	627.1	106	16.8	15	621.2	140.9	22.73	15	543.3	136.8	25.08	14		88.2	17.19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Seminal vesicle + CG,	U	15	387.5	44.7	11.6	15	387.5	67.84	17.51	15	344.9	59.80	17.34	14		52.4	16.19
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	without fluid (mg)	А	15	385.9	44.7	11.6	15	388.0	67.84	17.51	15	343.9	59.80	17.34	14		52.4	16.19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ventral prostate (mg)	U	15	257.5	37.8	14.7	15	264.0	61.11	23.14	15	236.3	44.33	18.76	14		46.0	23.11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		А	15	256.5	37.8	14.7	15	264.8	61.11	23.14	15	235.4	44.33	18.76	14		46.0	23.11
A 15 122.4 17.6 14.3 15 115.6 21.53 18.68 15 (↓14) 15.41 14.64 14 113.0 18.9 16. ABC (mg) U 15 539.6 61.5 11.4 15 527.8 107.7 20.40 15 491.4 97.15 19.77 14 453.9* (↓16) 67.0 14. A 15 537.9 61.5 11.4 15 528.9 107.7 20.40 15 490.0 97.15 19.77 14 457.2* (↓15) 67.0 14. Epididymis, U 15 201.9 19.0 9.4 15 199.3 18.61 9.33 15 187.5 29.15 15.54 14 183.0 23.1 12.9 Epididymis, U 15 201.1 21.5 10.7 15 201.0 15.32 7.62 15 193.4 30.89 15.97 14 182.0 17.2	Dorsolateral prostate (mg)	U	15	122.8	17.6	14.3	15	115.3	21.53	18.68	15	(↓14)	15.41	14.64	14	112.2	18.9	16.81
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		А	15	122.4	17.6	14.3	15	115.6	21.53	18.68	15		15.41	14.64	14		18.9	16.81
A15537.961.511.415528.9107.720.4015490.097.1519.7714 $(\downarrow 15)$ 67.014.Epididymis, eft (mg)U15201.919.09.415199.418.619.3315187.529.1515.5414182.023.112.Epididymis, eight (mg)A15201.219.09.415199.318.619.3315187.229.1515.5414183.023.112.Epididymis, ight (mg)U15201.121.510.715201.015.327.6215193.430.8915.9714182.017.29.4Restis, left mg)U15136661.34.4915140786.786.1715135193.406.9114130018914.Restis, left mg)U15136461.34.4915140886.786.1715135193.406.9114130018914.Restis, right mg)U15139372.95.2315142087.276.15151349136.710.1314133716712.Restis, right mg)U1513.732.7620.11513.912.09815.081513.322.2717.041412.632.8122.	LABC (mg)	U	15	539.6	61.5	11.4	15	527.8	107.7	20.40	15	491.4	97.15	19.77	14		67.0	14.7
eft (mg) A 15 201.2 19.0 9.4 15 199.3 18.61 9.33 15 187.2 29.15 15.54 14 183.0 23.1 12. Epididymis, ight (mg) U 15 201.1 21.5 10.7 15 201.0 15.32 7.62 15 193.4 30.89 15.97 14 182.0 17.2 9.4 ight (mg) A 15 200.2 21.5 10.7 15 201.2 15.32 7.62 15 193.4 30.89 15.97 14 182.0 17.2 9.4 Gestis, left U 15 1366 61.3 4.49 15 1407 86.78 6.17 15 1352 93.40 6.91 14 1300 189 14. mg) A 15 1364 61.3 4.49 15 1407 86.78 6.17 15 1351 93.40 6.91 14 1305 189 14. regis, right U 15 1393 72.9 5.23 15		А	15	537.9	61.5	11.4	15	528.9	107.7	20.40	15	490.0	97.15	19.77	14		67.0	14.7′
Epididymis, ight (mg) U 15 201.1 21.5 10.7 15 201.0 15.32 7.62 15 193.4 30.89 15.97 14 182.0 17.2 9.4 ight (mg) A 15 200.2 21.5 10.7 15 201.2 15.32 7.62 15 193.4 30.89 15.97 14 182.0 17.2 9.4 Gestis, left U 15 1366 61.3 4.49 15 1407 86.78 6.17 15 1352 93.40 6.91 14 1300 189 14. mg) A 15 1364 61.3 4.49 15 1407 86.78 6.17 15 1351 93.40 6.91 14 1300 189 14. mg) A 15 1393 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12	Epididymis,	U							18.61				29.15		14			12.6
A15200.221.510.715201.215.327.6215192.930.8915.9714183.417.29.4Testis, leftU15136661.34.4915140786.786.1715135293.406.9114130018914.mg)A15136461.34.4915140886.786.1715135193.406.9114130518914.Festis, rightU15139372.95.2315142087.276.15151349136.710.1314133716712.mg)A15138972.95.2315142087.276.15151347136.710.1314134116712.Chyroid, fixedU1513.732.7620.11513.912.09815.081513.322.2717.041412.632.8122.	left (mg)							199.3	18.61				29.15	15.54			23.1	12.6
U 15 1366 61.3 4.49 15 1407 86.78 6.17 15 1352 93.40 6.91 14 1300 189 14. mg) A 15 1364 61.3 4.49 15 1408 86.78 6.17 15 1351 93.40 6.91 14 1300 189 14. mg) A 15 1364 61.3 4.49 15 1408 86.78 6.17 15 1351 93.40 6.91 14 1305 189 14. Festis, right U 15 1393 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12. mg) A 15 13.89 72.9 5.23 15 1420 87.27 6.15 15 1347 136.7 10.13 14 1341 167 12. mg)	Epididymis,	U																9.45
mg) A 15 1364 61.3 4.49 15 1408 86.78 6.17 15 1351 93.40 6.91 14 1305 189 14. Festis, right U 15 1393 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12. mg) A 15 1389 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12. mg) A 15 13.89 72.9 5.23 15 1420 87.27 6.15 15 1347 136.7 10.13 14 1341 167 12. Thyroid, fixed U 15 13.73 2.76 20.1 15 13.91 2.098 15.08 15 13.32 2.27 17.04 14 12.63 2.81 22. <td>right (mg)</td> <td></td> <td>9.45</td>	right (mg)																	9.45
U 15 1393 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12. mg) A 15 1389 72.9 5.23 15 1420 87.27 6.15 15 1349 136.7 10.13 14 1337 167 12. mg) A 15 1389 72.9 5.23 15 1420 87.27 6.15 15 1347 136.7 10.13 14 1341 167 12. Thyroid, fixed U 15 13.73 2.76 20.1 15 13.91 2.098 15.08 15 13.32 2.27 17.04 14 12.63 2.81 22.	Festis, left																	14.5
mg) A 15 1389 72.9 5.23 15 1420 87.27 6.15 15 1347 136.7 10.13 14 1341 167 12. Chyroid, fixed U 15 13.73 2.76 20.1 15 13.91 2.098 15.08 15 13.32 2.27 17.04 14 12.63 2.81 22.	(mg)																	14.5
Chyroid, fixed U 15 13.73 2.76 20.1 15 13.91 2.098 15.08 15 13.32 2.27 17.04 14 12.63 2.81 22.	Festis, right									6.15			136.7	10.13			167	12.4
	(mg)																	12.4
	Thyroid, fixed	U								15.08			2.27			12.63	2.81	22.2

Data were obtained from page 60 of the study report. Percent differences from controls (calculated by reviewers) are included in а parentheses. Unadjusted for body weight on PND 23 Adjusted for body weight on PND 23 Organ-to-body weight ratio (relative to body weight)

U

А

R

Number of animals examined Ν

SD Standard Deviation

CV Coefficient of Variation

* Significantly different from controls at p<0.05. E. <u>Clinical Chemistry and Hormone Levels</u>: Mean hormone and clinical chemistry levels are presented in Table 5. No treatment-related effects on T₄, TSH, or testosterone levels were observed at any dose. T₄ and TSH levels were lower than the control group in the 100, 300, and 1000 mg/kg/day groups and testosterone was lower at 300 and 1000 mg/kg/day. However, these changes were not statistically significant and were not associated with any histopathological findings.

The CV value for mean TSH level in the control group (75.059%) exceeded the maximum value in the performance criteria (58.29%); however, the mean TSH value was within the acceptable range of the performance criteria.

Treatment-related differences (p<0.01) from controls in the following clinical chemistry parameters were noted at 1000 mg/kg/day: (i) ALT (\uparrow 51%); (ii) sodium (\uparrow 2%); (iii) albumin (\uparrow 5%); (iv) ALP (\uparrow 22%); (v) AST (\uparrow 35%); (vi) chloride (\uparrow 4%); (vii) phosphorus (\uparrow 7%); (viii) total protein (\uparrow 5%); and (ix) urea nitrogen (\downarrow 17%). Additionally, increased ALT (\uparrow 22%, p<0.05) was noted at 300 mg/kg/day. However, as these differences were minor and/or in a direction not usually associated with a toxicological effect (urea nitrogen), none of the findings at 300 or 1000 mg/kg/day were considered adverse. No other statistically significant clinical chemistry findings were noted.

TABLE 5. Ho	rmo	ne Lev	vels ar	ıd Clin	ica	Chem	v		1	<i></i>			1			
Parameter	Vehicle Control				Glyphosate 100 mg/kg/day		Glyphosate 300 mg/kg/day		Glyphosate 1000 mg/kg/day							
r al ameter	NT		CD	CV	N	3.6	CD	CV	NT.		GD	CV	NT	м	CD	CV
	Ν	Mean	SD	(%)	Ν	Mean	SD	(%)	Ν	Mean	SD	(%)	Ν	Mean	SD	(%)
Total T ₄ (µg/dL)	Thyroid Hormones Total T4 (μg/dL) 15 6.22 1.08 17.3 15 6.02 0.43 7.06 15 5.92 0.87 14.8 14 5.68 0.74 13.0															
TSH (ng/mL)	15	8.30	6.23	75.1	15	6.77	3.73	55.0	15	6.91	2.82	40.8	14	5.37	3.40	63.2
Testosterone	15	2.86	1.57	54.9	15	3.97	3.23	81.2	15	2.31	1.54	66.4	14	1.57	0.80	50.7
(ng/mL)	15	2.80	1.57	54.9	15					2.51	1.54	00.4	14	1.57	0.80	50.7
	1.5	2.20	0.00	0.07	1.7			Chemis	<u> </u>	0.15	0.04	10.1		2.20	0.05	10.5
A/G Ratio	15	2.28	0.20	8.86	15	2.27	0.20	8.59	15	2.17	0.26	12.1	14	2.38 4.3**	0.25	10.5
Albumin (g/dL)	15	4.1	0.12	3.05	15	4.1	0.14	3.27	15	4.1	0.18	4.35	14	(†5)	0.22	5.16
ALP (U/L)	15	277	36.8	13.3	15	276	34.5	12.5	15	287	59.6	20.8	14	339** (†22)	63.6	18.7
ALT (U/L)	15	59	7.7	13.0	15	66	8.7	13.2	15	72* (†22)	13.4	18.4	14	89** (†51)	23.1	26.0
AST (U/L)	15	111	17.1	15.4	15	129	21.7	16.8	15	131	28.6	21.9	14	150* (†35)	59.7	39.7
Bile Acids (µmol/L)	15	22.7	13.9	61.2	15	16.9	12.1	71.3	15	28.1	25.7	91.4	14	20.7	8.32	40.3
Calcium (mg/dL)	15	12.3	0.37	2.98	15	12.5	0.32	2.55	15	12.4	0.19	1.52	14	12.4	0.45	3.66
Chloride (mEq/L)	15	100	1.5	1.5	15	100	1.2	1.2	15	101	1.1	1.1	14	104** (†4)	2.4	2.3
Cholesterol (mg/dL)	15	91	12.7	14.0	15	88	15.0	17.1	15	83	13.2	15.9	14	85	11.4	13.4
Creatinine (mg/dL)	15	0.2	0.05	33.7	15	0.1	0.05	35.2	15	0.1	0.05	35.2	14	0.1	0.05	36.6
GGT (U/L)	15	0.2	0.14	88.4	15	0.1	0.03	24.2	15	0.2	0.29	153	14	0.1	0.00	0.00
Globulin (g/dL)	15	1.8	0.15	8.36	15	1.9	0.15	8.12	15	1.9	0.21	11.1	14	1.8	0.15	8.39
Glucose (mg/dL)	15	152	6.0	4.0	15	154	9.7	6.3	15	150	9.7	6.5	14	156	11.5	7.4
Phosphorous (mg/dL)	15	10.1	0.61	6.03	15	10.3	0.61	5.90	15	10.4	0.70	6.77	14	10.8** (†7)	0.50	4.64
Potassium (mEq/L)	15	6.39	0.39	6.03	15	6.37	0.27	4.25	15	6.40	0.28	4.40	14	6.43	0.384	5.98
Sodium (mEq/L)	15	142	1.3	0.9	15	143	1.7	1.2	15	144	1.3	0.9	14	145** (†2)	2.1	1.5
Total Bilirubin (mg/dL)	15	0.05	0.01	29.9	15	0.05	0.02	41.8	15	0.05	0.02	40.3	14	0.06	0.021	35.2
Total Protein (g/dL)	15	5.9	0.21	3.57	15	6.0	0.21	3.47	15	6.0	0.21	3.49	14	6.2** (†5)	0.26	4.15
Triglycerides (mg/dL)	15	124	33.1	26.6	15	158	48.8	30.8	15	124	37.4	30.2	14	122	51.4	42.1
Urea Nitrogen (mg/dL)	15	15.4	1.57	10.2	15	14.7	1.98	13.5	15	14.0	2.27	16.2	14	12.8** (↓17)	2.36	18.4

a Data were obtained from pages 61 and 62 of the study report. Percent differences from controls (calculated by reviewers) are included in parentheses.

N Number of animals examined

SD Standard Deviation

CV Coefficient of Variation

* Significantly different from controls at p<0.05.

** Significantly different from controls at p<0.01.

F. <u>Macro- and Histopathology</u>: At the scheduled euthanasia, no treatment-related macroscopic findings were noted. The incidences of histopathological findings of the thyroid gland are presented below in Table 6. At 1000 mg/kg/day, there was a slight increase in the number of animals with colloid area Grade 4 (5 treated vs. 1 control) and

Grade 5 (1 treated vs. 0 controls). There were no treatment-related effects on follicular cell height at any dose compared to controls. There were no treatment-related findings in the testes, epididymides or kidneys.

TABLE 6. Incidence of Histopathological Lesions of the Thyroid Gland ^a						
			Parameter	r Evaluated		
Treatment		Colloid Area	ı	Fe	ollicular Cell H	leight
Groups	Grade ^b	Incie	dence	Grade ^b	Inci	dence
	Glaue	0	Е	Glaue	0	Е
	1	0	15	1	0	15
	2	6	15	2	13	15
Vehicle Control	3	8	15	3	2	15
	4	1	15	4	0	15
	5	0	15	5	0	15
	1	0	15	1	0	15
	2	3	15	2	13	15
Glyphosate 100 mg/kg/day	3	10	15	3	2	15
100 mg/kg/uay	4	2	15	4	0	15
	5	0	15	5	0	15
	1	0	15	1	0	15
	2	3	15	2	13	15
Glyphosate 300 mg/kg/day	3	10	15	3	2	15
500 mg/kg/uay	4	2	15	4	0	15
	5	0	15	5	0	15
	1	0	14	1	1	14
	2	3	14	2	13	14
Glyphosate 1000 mg/kg/day	3	5	14	3	0	14
1000 mg/kg/day	4	5	14	4	0	14
	5	1	14	5	0	14

a Data were obtained from page 116 of the study report.

b Thyroid histopathology is graded on a 1-5 scale: Follicular cell height, 1 =lowest, 5 = highest; and Colloid area, 1 =most colloid, 5 = least colloid.

O Number Observed

E Number Examined

III. DISCUSSION AND CONCLUSIONS

A. <u>INVESTIGATOR'S CONCLUSIONS</u>: The investigators concluded that there was no evidence of any direct test substance-related androgenic or anti-androgenic effects, nor was there any evidence of direct test substance-related effects on pubertal development or thyroid function in the juvenile/peripubertal male rat at up to 1000 mg/kg/day (limit dose).

B. <u>AGENCY COMMENTS</u>: One male in the 1000 mg/kg/day group was found dead prior to dosing on PND 24; no significant clinical or macroscopic findings were observed in this animal. All other rats survived until scheduled sacrifice. Treatment-related clinical findings were limited to rales in 9/15 and 14/15 males in the 300 and 1000 mg/kg/day groups, respectively, approximately 4 hours post-dosing. This finding persisted in the daily examinations in 7/15 males at 1000 mg/kg/day through PND 52.

Treatment-related decreases in overall (PND 23-53) body weight gains were observed at 300 mg/kg/day (\downarrow 8%, not significant) and 1000 mg/kg/day (\downarrow 12%, p<0.01). On PND 53, final body weights in the 300 and 1000 mg/kg/day groups were decreased (p<0.05) by 7-10%. A treatment-related delay in the mean age at attainment of complete PPS was noted at 1000 mg/kg/day (48.0 days) compared to controls (45.9 days). It was reported that body weight differences of approximately 12% could delay balanopreputial separation by 1-2 days. The delay observed occurred at a dose that produced a 10% lower final body weight. Additionally, mean body weight at attainment of PPS was similar to controls in all treated groups. Furthermore, it was stated that if the test material was producing an anti-androgenic response, the testosterone level in the 1000 mg/kg/day group would have been expected to be higher than the control group. However, the testosterone level at 1000 mg/kg/day (1.57 ng/mL) was lower than the control group (2.86 ng/mL). Based on these findings, it was determined that the delay in attainment of complete PPS at 1000 mg/kg/day was a result of the treatment-related decrease in body weight, rather than a direct anti-androgenic effect.

No compound-related effects on organ weights were observed at any dose. Because there were no histologic findings in any tissues examined, the decreases noted in various absolute organ weights at 300 and 1000 mg/kg/day were considered to be secondary to decreased body weights.

No treatment-related effects on T₄, TSH, or testosterone levels were observed at any dose. T₄ and TSH levels were lower than the control group in the 100, 300, and 1000 mg/kg/day groups and testosterone was lower at 300 and 1000 mg/kg/day. However, these changes were not statistically significant and were not associated with any histopathological findings. Treatment-related differences (p<0.01) from controls in the following clinical chemistry parameters were noted at 1000 mg/kg/day: (i) ALT (\uparrow 51%); (ii) sodium (\uparrow 2%); (iii) albumin (\uparrow 5%); (iv) ALP (\uparrow 22%); (v) AST (\uparrow 35%); (vi) chloride (\uparrow 4%); (vii) phosphorus (\uparrow 7%); (viii) total protein (\uparrow 5%); and (ix) urea nitrogen (\downarrow 17%). Additionally, increased ALT (\uparrow 22%, p<0.05) was noted at 300 mg/kg/day.

At 1000 mg/kg/day, there was a slight increase in the number of animals with colloid area Grade 4 (5 treated vs. 1 control) and Grade 5 (1 treated vs. 0 controls). There were no treatment-related effects on follicular cell height at any dose compared to controls. There were no treatment-related findings in the testes, epididymides or kidneys.

The highest dose tested (1000 mg/kg/day) showed evidence of overt toxicity based on the decreases in terminal body weight, clinical signs and mortality.

- C. <u>STUDY DEFICIENCIES</u>: The following deficiencies were noted that are not considered to have had an adverse impact on the results, interpretation or conclusions of this study:
 - The control group body weight at PND 21 (44.7 g) was slightly below the performance criteria recommended value of 45.472 g; however, the % CV value was within the acceptable range.
 - The CV value for the body weight at attainment of PPS (9.77%) in the control group was above the recommended performance criteria range (7.57%). However, the mean weight at attainment of PPS and the mean and CV values for age of attainment of PPS were within the acceptable ranges.
 - The mean control thyroid (13.73 mg) and kidney weights (1.93 g) were below the recommended performance criteria minimum acceptable values (14 mg and 2.242 g, respectively) but were within the laboratory's historical control ranges for rats of this age, and the CV values were within the acceptable range.

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1550, Steroidogenesis Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-57-2012 (MRID 48617005)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer:	Signature:	Ronnie J. Bever Jr.
Ronnie J. Bever Jr., Ph.D., D.A.B.T.	Date:	06/12/2012
Secondary Reviewer	Signature:	Muela E Vuere
Michael E. Viana, Ph.D., D.A.B.T.	Date:	06/19/2012
	_	Jack D. Engy
Program Manager:	Signature:	$\overline{\mathcal{F}}$
Jack D. Early, M.S.	Date:	06/26/2012
		Jack Q. Engl
Quality Assurance:	Signature:	/ J
Jack D. Early, M.S.	Date:	06/26/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document). Primary Reviewer: <u>Anwar Y. Dunbar, Ph.D.</u> Risk Assessment Branch 1 Health Effects Division (7509P) Secondary Reviewer: <u>John Liccione, Ph.D.</u> Risk Assessment Branch 1 Health Effects Division (7509P)

	00	SPP 890.1550/ OECD None
	Signature:	Am J. Dah
l	Date:	05-27-15
	Signature:	ALE
į.	Date:	0618/15
		Template version 08/2011

DATA EVALUATION RECORD

STUDY TYPE: Steroidogenesis Assay (H295R Cells); OCSPP 890.1550

PC CODE: 417300

DP BARCODE: D398693

TXR#: 0053233

CAS No.: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (not reported)

SYNONYMS: *N*-(phosphonomethyl)glycine

<u>CITATION</u>: Hecker, M., Hollert H., Cooper, R., *et al.* (2011) The OECD validation program of the H295R steroidogenesis assay: phase 3. Final inter-laboratory validation study. MRID 48617005. Published: Environ. Sci. Pollut. Res. (2011) 18:503-515.

<u>SPONSOR</u>: Not applicable

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: The purpose of this study was to validate the use of a standardized steroidogenesis assay as detailed in OECD Guideline for the Testing of Chemicals: Draft Proposal for a New Guideline 4XX – The H295R Steroidogenesis Assay (available on-line at http://www.oecd.org/dataoecd/56/11/44285292.pdf). In this validation study, 28 chemicals were selected as a screen for potential effects of endocrine-disrupting chemicals on the production of testosterone (T) and 17B-estradiol (E2). These chemicals were selected based on their known or suspected endocrine activity, or lack thereof, and included inhibitors and inducers of different potencies as well as positive and negative controls. These chemicals were selected and approved by the OECD Validation and Management Group for Non-Animal Testing (VMG NA). Glyphosate was one of the chemicals evaluated. A total of seven laboratories from the USA, Denmark, Germany, Japan, Hong Kong, and Canada, each with different levels of experience in conducting the H295R steroidogenesis assay, were invited to participate in this validation study. Inclusion of laboratories with different levels of proficiency in conducting the assay was essential to evaluate the completeness of the test protocols and their transferability. Each laboratory was assigned a random code number (1-7) as part of the study. However, part way through the study, two of the seven laboratories decided to cease their participation in the validation studies. Thus, with the exception of the QC exposure data, only the data for the remaining five laboratories that completed the validation studies are presented (Labs 1, 2, 3, 4, and 6). One laboratory evaluated all 28 chemicals, and one other laboratory (#4) also evaluated glyphosate. The laboratories were not identified.

In this steroidogenesis assay (MRID 48617005), H295R cells cultured *in vitro* in 24-well plates were incubated with glyphosate (purity and lot # not provided) at seven concentrations between 0.0001 and 100 μ M (specific concentrations not reported) for 48 hours in triplicate for three independent experiments. The test chemical's vehicle was not identified. The presence or absence of precipitation and/or cytotoxicity was not reported. A Quality Control (QC) plate was run concurrently with each independent run of a test chemical plate to demonstrate that the assay responded properly to positive control agents at two concentrations; positive controls included the known inhibitor (prochloraz) and inducer (forskolin) of estradiol and testosterone production. T and E2 levels were measured using radioimmunoassays or ELISA; responses of the QC plates measured by these assays were confirmed by LC-MS (at Lab 1).

The report stated that with a few exceptions, all of the laboratories met the key quality performance parameters for conducting the H295R assay protocol. The report stated that two laboratories demonstrated that glyphosate exposure does not affect testosterone or estradiol levels in this assay; however, data were not presented.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for a Steroidogenesis assay (OCSPP 890.1550).

<u>COMPLIANCE</u>: Signed and dated GLP Compliance and Quality Assurance statements were not provided in this published article.

I. MATERIALS AND METHODS

The following information was obtained from the cited article (MRID 48617005). Additionally, the cited article stated that a standardized H295R steroidogenesis assay protocol was developed and presented as a proposed draft guideline (<u>http://www.oecd.org/dataoecd/56/11/44285292.pdf</u>). The reviewers assume that this protocol was followed without deviation, as the point of this study was the validation of this protocol. These assumptions apply not only to the methodology, but the recommended criteria and required protocol compliance of the results as well. Consequently, some of the materials and methods from this report come from the OECD protocol referenced by the hyperlink.

A. <u>MATERIALS</u>: A total of 28 chemicals were selected in this study to validate the H295R steroidogenesis assay as a screen for potential effects of endocrine-disrupting chemicals on the production of T and E2. These chemicals were selected based on their known or suspected endocrine activity, or lack thereof, and included inhibitors and inducers of different potencies as well as positive and negative controls. Where possible, the test set of chemicals was harmonized with those used in other steroidogenesis assays currently under development or in validation [e.g., the Registration, Evaluation, Authorization and Restriction of Chemical substances (REACH) program]. These chemicals were selected and approved by the OECD VMG NA. Glyphosate was one these chemicals.

1. <u>Test Facility</u>:

Location:

Study Director: Other Personnel: Study Period:

2. <u>Test Substance</u>:

Description (molecular weight): Batch # (expiration date): Purity: Solubility: Vapor pressure: Stability: Storage conditions: CAS #: Structure:

Not reported

USA, Denmark, Germany, Japan, Hong Kong, and Canada (laboratories from seven countries were initially involved, but two decided to cease participation; the seven laboratories were not identified) Not reported Not reported

Glyphosate

Not reported

White crystalline powder (169.07) Not reported Not reported Not reported; water soluble (1.01 g/100 mL at 20°C) Not reported; $<1 \times 10^{-5}$ Pa at 25°C Not reported Not reported 1071-83-6 HO HO HO HO

3. <u>Positive Control:</u>

Description (molecular weight): Source: Lot # (expiration date): Purity: Solubility (in solvent): Storage conditions: CAS #: Forskolin White powder (410.50) Not reported Not reported Not reported Soluble at tested concentrations in DMSO Room temperature 66575-29-9

4.	<u>Negative Control</u> : Description (molecular weight): Source: Lot # (expiration date): Purity: Solubility (in solvent): Storage conditions: CAS #:	Prochloraz White powder (376.67) Not reported Not reported Not reported Soluble at tested concentrations in DMSO Room temperature 67747-09-5
5.	Solvent/Vehicle Control:	Not reported (DMSO listed in the proposed draft guideline)
6.	Source: Lot # (expiration date):	Dulbecco's modified Eagle's medium/nutrient mixture F12 Ham with 15 mM HEPES, sodium bicarbonate, ITS+Premix, and 2.5% Nu-Serum (assumed by reviewer) Not reported Not reported

7. <u>Test Cells</u>: H295R human adrenocortical carcinoma cells (ATCC CLR-2128) were cultured for a minimum of four to five passages to ensure sufficient basal E2 production (cell age was not to exceed ten passages). Cells were incubated in the stock medium at 5% CO₂ and 37°C for approximately 24 hours prior to exposure.

The following performance criteria were met (indicated by an "x"):

- x Cell passage identifier. Cell Passage #: Not reported
- x Cells frozen down at passage 5
- x Frozen cells cultured for 4 additional passages
- x Total number of passages does not exceed 10
- **B.** <u>METHODS</u>: A total of seven laboratories from the USA, Denmark, Germany, Japan, Hong Kong, and Canada, each with different levels of experience in conducting the H295R steroidogenesis assay, were invited to participate in this validation study. Inclusion of laboratories with different levels of proficiency in conducting the assay was essential to evaluate the completeness of the test protocols and their transferability. Each laboratory was assigned a random code number (1–7) as part of the study. However, part way through the study, two of the seven laboratories decided to cease their participation in the validation studies. Thus, with the exception of the QC exposure data, only the data for the remaining five laboratories that completed the validation studies are presented (Labs 1, 2, 3, 4, and 6). One laboratory evaluated all 28 chemicals, and one other laboratory (#4) also evaluated glyphosate. The laboratories were not identified.
- 1. <u>Pre-Test Information</u>: The report stated that laboratories were required to demonstrate competence in performing all of the procedures that are part of the H295R steroidogenesis assay prior to testing chemicals. The QC that was part of the actual conduct of the assay to allow for the evaluation of the assay performance during each experiment also served as a benchmark for determining laboratory competence prior to the initiation of chemical testing. Prior to initiation of the actual exposure experiments, each chemical was tested for potential interference with the hormone detection system used. This was of particular relevance for antibody-based assays such as enzyme-linked immunoassays (ELISAs) and radio immunoassays (RIAs), because it has been previously shown that some chemicals can interfere with these tests. The following performance criteria were to be met, and the report

stated that all laboratories met the key quality performance parameters with few exceptions (details not reported):

System	Parameter	Comparison to/between	Т	E2
Hormone detection system	Sensitivity	Detectable fold decrease relative to SC	≥2-fold	≥2-fold
	Precision	CV among replicate measures (absolute concentrations) of the same well for SCs	≤25%	≤25%
Cell assay	Basal hormone production in SCs	Fold greater than LOQ of hormone detection system	\geq 5-fold	≥ 2.5 -fold
	Precision (SCs)	CV among absolute concentrations of replicate wells	≤30%	≤30%
	Sensitivity (induction @ 10 µM forskolin)	Fold greater than SC	\geq 2-fold	\geq 7.5-fold
	Sensitivity (inhibition @ 3 µM prochloraz)	Fold less than SC	≥ 0.5 -fold	≥ 0.5 -fold

Induction and inhibition refer to the relative change in hormone production after exposure to 10 μ M forskolin or 3 μ M prochloraz, respectively, in the QC plates

CV Coefficient of variation (%), LOQ limit of quantification, SC solvent control

Resulting data from the pre-test assays were not presented to allow for independent verification.

- **a.** <u>Hormone Assay Interference Test</u>: No data from the hormone assay interference test were provided.
- b. <u>Hormone Extraction</u>: No data from pre-test hormone extraction were provided.
- c. <u>Laboratory Proficiency Test</u>: No laboratory proficiency test data were provided.
- 2. <u>Test Solutions</u>: Details on the preparation of the glyphosate test solution (including the solvent used) were not provided. The presence or absence of precipitation was not reported.
- **3.** <u>Cell Plating and Preincubation</u>: Cells were maintained in the Stock Medium described above. H295R cells were grown for five passages, frozen in liquid nitrogen, then thawed and cultured for at least four or five additional passages prior to use in the assay. The cells were plated into wells of a 24-well cell culture plate at a density of approximately 200,000 to 300,000 cells/mL. The cells were then placed into a 5% CO₂ incubator at 37°C for approximately 24 hours prior to chemical exposure. Prior to dosing, the cells were checked microscopically for attachment and proper morphology. Each experiment was repeated three times with exception of Labs 1 and 3, where one and two replicate experiments were conducted per chemical, respectively.
- 4. <u>Exposure</u>: Cells were exposed for 48 h to seven concentrations between 0.0001 and 100 μ M of the test chemical in triplicate. Although these concentrations were not presented in the study report, the concentrations are typically as shown in Table 1.

TABLE 1.	E 1. Dosing Schematic for the Exposure of H295R Cells to Glyphosate (Final Concentrations in μM). ^a						
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Α	DMSO	DMSO	DMSO	0.1	0.1	0.1	
В	100	100	100	0.01	0.01	0.01	
С	10	10	10	0.001	0.001	0.001	
D	1	1	1	0.0001	0.0001	0.0001	

a Not included in the study report.

A concurrent QC plate was included with each of the independent runs of the test chemical plates to demonstrate the assay's response to forskolin (an inducer of testosterone and estradiol production) and prochloraz (an inhibitor of testosterone and estradiol production). The QC plate was prepared and dosed in the same manner as the test plate with either forskolin or prochloraz, according to the schematic presented in Table 2.

ТА	TABLE 2. Dosing Schematic for the QC Plate for Positive Controls (Final Concentrations in µM). ^a							
	1	2	3 4		5	6		
Α	Blank	Blank	Blank	Blank + MeOH ^b	Blank + MeOH ^b	Blank + MeOH ^b		
В	DMSO	DMSO	DMSO	DMSO + MeOH ^b	DMSO + MeOH ^b	DMSO + MeOH ^b		
С	Forskolin Forskolin		Forskolin	Prochloraz	Prochloraz	Prochloraz		
	1 µM	1 µM	1 µM	0.1 µM	0.1 µM	0.1 µM		
D	Forskolin	Forskolin	Forskolin	Prochloraz	Prochloraz	Prochloraz		
	10 µM	10 µM	10 µM	1 µM	1 µM	1 µM		

a Data were not included in the study report, but were reported in the OECD protocol on page 11.

b MeOH = methanol was added to these wells for 30 minutes at room temperature following medium removal (end of exposure).

Following dosing, the plates were incubated for 48 hours under the conditions previously described. After the 48 hour exposure, each well was examined under the microscope for cell condition (attachment, morphology, degree of confluence) and signs of cytotoxicity. The media was collected from all wells in two equal portions and stored at -80° C until analyzed.

- 5. <u>Cell Viability/Cytotoxicity Assay</u>: After media removal, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Mosman, 1983) or the Live/Dead® variability assay (Invitrogen, Carlsbad, CA). All concentrations, where cell viability was less than or equal to 80%, were excluded from the data analysis.
- 6. <u>Hormone Measurement System</u>: At the end of the exposure period, the medium was removed from each well, and hormones were generally extracted using ethyl ether; however, the medium was used without extraction in the RIA assay. The other laboratories used the ELISA detection system, with one laboratory confirming the QC plate hormone results using LC-MS analysis. The ELISA and RIA detection systems used commercially available hormone detection kits. The lower limit of quantification (LLQ) was $\leq 100 \text{ pg/mL}$ for testosterone and $\leq 10 \text{ pg/mL}$ for estradiol.

The following performance criteria were met (indicated by an "x"):

- x Method detection limit (100 pg/mL testosterone; 10 pg/mL estradiol)
- x Spiked sample recovery acceptable for two concentrations of testosterone and estradiol (mean measured amount
 - from triplicate samples $\leq 30\%$ of nominal concentration)

Х	H
Х	S
Х	1

Hormone cross-reactivity (antibody-based assays only; \leq 30% of basal production of the respective hormone) Solvent control within 75% range below maximum response on standard curve Test compound tested for interference with measurement system

C. <u>DATA ANALYSIS</u>: All data were expressed as mean ± standard error of the mean (SEM). To examine the relative changes in hormone production, results were normalized to the mean solvent control (SC) value for each assay (i.e., each 24-well plate of cells used to test a given chemical), and results were expressed as percent change relative to the SC. Prior to conducting statistical analyses, the assumptions of data normality and variance of homogeneity were evaluated. Normality was evaluated using standard probability plots or the Shapiro–Wilk's test. If the data were normally distributed or approximated a normal distribution, differences between chemical treatments and SCs were analyzed using one-way analysis of variance (ANOVA) followed by a two-sided Dunnett's test. If data were not normally distributed, the Kruskal–Wallis test followed by the Mann–Whitney U test were used. Data analysis was conducted using pooled replicate experiments. All statistical analyses were considered significant at p<0.05.</p>

II. RESULTS

- A. <u>TEST COMPOUND</u>: Data were not presented. Two labs demonstrated that the testosterone and estradiol levels in glyphosate-treated cells were similar to SC. These results were in stated to be in agreement with *in vivo* (fish) data¹. No additional information was provided.
- **B.** <u>**CYTOTOXICITY:**</u> The presence or absence of cytotoxicity in the glyphosate-treated cells was not reported.
- C. <u>QC PLATE</u>: The report stated that with a few exceptions, all of the laboratories met the key quality performance parameters for conducting the H295R assay protocol. It is not clear if this statement was referring to the concurrent QC plates, the Pre-Test, or both. However, the results provided were shown in Figure 1 of the study report on page 507 (copied below).

¹ Soso, AB, Barcellos, LJG, Ranzani-Paiva, MJ, *et al.* (2007) Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundi'a (*Rhamdia quelen*). Environ. Toxicol. Pharm. **23**:308–313.

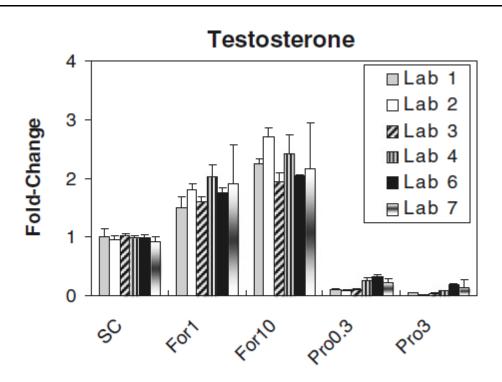
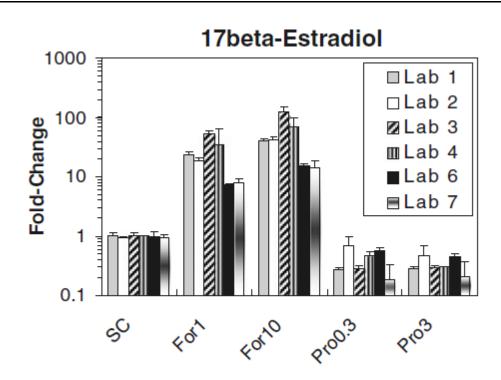



Fig. 1 Comparison of changes in the concentrations of testosterone (T) and estradiol (E2) relative to the solvent controls (SC=1) in the QC plates among laboratories (Lab). For1=1 μ M Forskolin; For10=10 μ M Forskolin; Pro0.3=0.3 μ M Prochloraz; Pro3=3 μ M

Prochloraz. Error bars= $1 \times$ standard deviation. *Bars* represent means of four independent experiments. (Lab 5: only T data from two experiments.)

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATOR'S CONCLUSIONS</u>: Glyphosate exposure did not affect testosterone or estradiol levels in this assay.
- **B.** <u>AGENCY COMMENTS</u>: Glyphosate was evaluated by two laboratories as part of the OECD validation program of the H295R steroidogenesis assay. Both laboratories reported that glyphosate exposure does not affect testosterone or estradiol levels in this assay.
- C. <u>STUDY DEFICIENCIES</u>: In lieu of detailed reporting of the methodology, many assumptions were made regarding the conduct of the assay according to the OECD guideline.

DATA EVALUATION RECORD

GLYPHOSATE

Study Type: OCSPP 890.1600, In vivo Uterotrophic Assay

EPA Contract No. EP10H001452 Task Assignment No. 2-34-2012 (MRID 48617003)

> Prepared for Health Effects Division Office of Pesticide Programs U.S. Environmental Protection Agency 2777 South Crystal Drive Arlington, VA 22202

> > Prepared by CSS-Dynamac Corporation 1910 Sedwick Road, Building 100, Suite B Durham, NC 27713

Primary Reviewer: <u>Kelly Luck, M.S.</u>	Signature: Date:	<u> </u>
Secondary Reviewer:	Signature:	David a. MEEuro
David A. McEwen, B.S.	Date:	4/13/2012
		Jack D. Eury
Program Manager:	Signature:	$\overline{\mathcal{F}}$
Jack D. Early, M.S.	Date:	4/18/2012
		Jack D. Ewy
Quality Assurance:	Signature:	\sim
Jack D. Early, M.S.	Date:	4/18/2012

This Data Evaluation Record may have been altered by the Health Effects Division subsequent to signing by CSS-Dynamac Corporation personnel.

The US EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 screening battery is comprised of eleven screening assays intended to identify a chemical's likely endocrine bioactivity, i.e., its potential to interact with the estrogen, androgen, or thyroid (E, A, or T) pathways. The robustness of the Tier 1 battery is based on the strengths of each individual assay to identify potential endocrine bioactivity with complementary endpoints within the assay, where available, and redundancy across the battery. Thus, the results of each individual assay should not be considered in isolation but rather should be considered in the context of other assays in the battery as well as Other Scientifically Relevant Information (OSRI). In order to determine if a chemical has the potential to interact with the E, A or T pathways, a Weight of Evidence (WoE) evaluation of Tier 1 assay results, in combination with the findings in the OSRI, should be undertaken (refer to the WoE Document).

GLYPHOSATE/ 417300		ic Assay (2012) / Page 1 of 8 CSPP 890.1600/ OECD 440
Primary Reviewer: Anwar Y. Dunbar, Ph.D.	Signature:	Am J. Dah 05-27-15
Risk Assessment Branch 1, Health Effects Division (7509P) Date:	05-27-15
Secondary Reviewer: Jess Rowland		terolow
Health Effects Division (7509P)	Date:	
× ·		Template version 09/2011
DATA EVALUATION RECO	ORD	

STUDY TYPE: Uterotrophic Assay (Rat); OCSPP 890.1600; OECD 440

PC CODE: 417300

DP BARCODE: D398693

TXR#: 0053233

CAS#: 1071-83-6

TEST MATERIAL (PURITY): Glyphosate (85.1% a.i.)

SYNONYMS: N-(phosphonomethyl) glycine

<u>CITATION</u>: Stump, D. G. (2012). A Uterotrophic Assay of Glyphosate Administered Orally in Ovariectomized Rats. WIL Research Laboratories, LLC, Ashland, OH. Laboratory Report No.: WIL-843002, January 6, 2012. MRID 48617003. Unpublished.

SPONSOR: Joint Glyphosate Task Force, LLC, 8325 Old Deer Trail, Raleigh, NC 27615

TEST ORDER #: CON-417300-23

EXECUTIVE SUMMARY: In a Uterotrophic Assay (MRID 48617003) conducted to screen for potential estrogenic activity, glyphosate (85.1% a.i., Batch/lot# GLP-1103-21149-T) in 0.5% methylcellulose (w/v) was administered daily via oral gavage to groups of six ovariectomized female Sprague Dawley rats at dose levels of 0 (vehicle), 100, 300, or 1,000 (limit dose) mg/kg/day on post-natal days (PND) 66/67 to 68/69. The positive control group was treated with a daily dose of 17α -ethynyl estradiol (EE) at 3 µg/kg/day by oral gavage. Body weights were determined daily. All animals were terminated and necropsied on PND 69/70 approximately 24 hours after the final dose administration to determine wet and blotted uterine weights.

All animals survived until scheduled termination and no treatment-related clinical findings were observed in glyphosate dosed animals. Body weights, body weight gains, and uterine weights in the glyphosate groups were comparable to the vehicle control.

In the positive control (EE) group, mean body weights decreased on Days 3 and 4 (not significant, NS), leading to an overall body weight loss during the study of 5.6 g (p<0.01) compared to a gain of 11.3 g in the controls. Absolute wet and blotted uterus weights for the positive control (EE) group were increased (p<0.01) by 758% and 256%, respectively, as expected.

No statistically significant changes were seen in uterine weight in this assay. Glyphosate is negative in the uterotrophic assay.

The assay **satisfies** the EDSP Tier 1 Test Order requirements for a uterotrophic assay (OCSPP 890.1600).

<u>COMPLIANCE</u>: Signed and dated GLP Compliance, Data Confidentiality and Quality Assurance statements were provided.

I. MATERIALS AND METHODS

A. MATERIALS

1.	Test Facility:	WIL Research Laboratories, LLC
	Location:	Ashland, OH
	Study Director:	D. G. Stump
	Other Personnel:	E. S. Bodle (Assistant Director, Analytical Chemistry), S. A. Keets (Senior Operations Manager, Vivarium), C. A. Kopp (Manager, Gross Pathology and Developmental Toxicology Laboratory), T. M. Rafeld (Group Manager, Formulations Laboratory), C. S. Wally (Group Supervisor, Sample Processing Laboratory), R. A. Wally (Operations Manager, Reporting & Technical Support Services), M. E. Haubenstricker (Participating Scientist, Analyses of Dosing Formulations), L. Freshwater (Contributing Scientist, Statistical Analysis)
	Study Period:	June 14, 2011 - January 6, 2012
•		

2. <u>Test Substance</u>: Description: Source: Lot/Batch #: Purity: Stability: CAS #: Structure: Glyphosate White powder Monsanto (St. Louis, MO) GLP-1103-21149-T (expiration date 3/9/2012) 85.14% (95.93% dried) Stable in vehicle for up to 15 days at room temperature 1071-83-6

H `он

3. <u>Reference Estrogen</u>: Supplier: Lot/Batch #: Purity: CAS #:

17α -ethynyl estradiol (EE)

Sigma Aldrich (St. Louis, MO) 028K1411 (expiration date 8/4/2011) 99.0% 57-63-6

4. <u>Solvent/Vehicle Control</u> (test substance):

Supplier: Lot/Batch #: Rationale (if other than water): Final concentration:

Solvent/Vehicle Control (EE): Supplier: Lot #:

Rationale (if other than water): Final concentration:

Methylcellulose

Sigma Chemical (St. Louis, MO) 060M0123V (expiration date 5/1/2013) Test substance not soluble in water at the concentrations used in the study 0.5% (w/v)

Ethanol/Corn oil

Spectrum Chemical Manufacturing Corporation (New Brunswick, NJ) Ethanol: ZT0426 (expiration date 8/2/2013) Corn oil: 2AD0465 (expiration date 2/1/2013) Not applicable EE was dissolved in minimal amounts of 95% ethanol and then diluted with corn oil (ratio of ethanol to corn oil was not reported)

5. <u>Test Animals</u>:

Species:	Rat (ovariectomiz	zed females only)						
Strain:	Sprague Dawley	[Crl:CD(SD)]						
Age/weight at dose initiation:	PND 66-67/245.	6 – 301.2 g						
Source:	Charles River La	boratories (Portage, MI)						
Housing:	Rats were individ cage board.	lually housed in stainless steel wire-mesh cages suspended above						
Diet:	2016CM Teklad Global 16% Protein Rodent Diet, Harlan Laboratories, <i>ad libitum</i> Genistein equivalent content = 29.0 ppm total isoflavones (genistein + daidzein + glycitein)							
Water:	Reverse-osmosis purified drinking water, ad libitum							
Environmental conditions:	Temperature:	21.3-21.6 °C (mean daily temperature)						
	Humidity:	51.8-55.2% (mean daily humidity)						
	Air changes:	10/hr						
	Photoperiod:	12 hrs light/12 hrs dark						
Acclimation period:	11 days	-						

B. STUDY DESIGN

- 1. <u>In-Life Dates</u>: Start: July 2, 2011 End: July 5, 2011
- 2. <u>Study Design</u>: Sexually mature ovariectomized female rats were received from Charles River Laboratories; rats were ovariectomized at PND 49 by the supplier. Animals were received approximately one week following ovariectomy (PND 55-56) and acclimated for 11 days prior to initiation of dosing. Vaginal smears were taken daily for five days prior to assignment of animals to study, to verify that females were in persistent diestrus. The dose administration period was from PND 66-67 through 68-69. Rats were euthanized approximately 24 hours later on PND 69-70 and necropsied for uterine weight measurements
- 3. <u>Animal Assignment</u>: Animals were randomly assigned, stratified by body weight, to the test groups noted in Table 1. Statistical analysis indicated that there were no significant differences between group mean weights at study initiation. Furthermore, the body weight of each animal was within ±20% of the overall mean.

TABLE 1. Study Design ^a										
Test Group	Dose (mg/kg/day)	# of Females								
Estrogen Agonist Assay										
Vehicle Control	0	6								
Low Glyphosate	100	6								
Mid Glyphosate	300	6								
High Glyphosate	1000	6								
17α-ethynyl estradiol (EE), Reference Estrogen	0.003	6								

a Data were obtained from page 25 of the study report. Glyphosate concentrations are expressed as free base equivalents.

- 4. <u>Dose Selection Rationale</u>: The dose levels used in this study were chosen based on the results of a dose range-finding study.¹ In the study, the test substance was administered by oral gavage to four groups of female rats [Crl:CD(SD)] at 0, 200, 500, and 1,000 mg/kg/day once daily for 3 consecutive days; the 0, 200, and 500 mg/kg/day dosing groups consisted of 5 rats each and the 1,000 mg/kg/day group consisted of 8 rats. All females survived to the scheduled necropsy. Mean body weights, body weight gains, and food consumption in all treatment groups were similar to the control group. Therefore, the high-dose level of 1,000 mg/kg/day (limit dose) was selected for the current study.
- 5. <u>Dose Preparation and Analysis</u>: Dose formulations were prepared once as single formulations for each dosage level by mixing appropriate amounts of test substance with 0.5% methylcellulose. A stock solution of EE was prepared once by dissolving the material in a small amount of 95% ethanol and diluting to volume with corn oil; dosing formulations were prepared daily by diluting the stock solution. Analyses to demonstrate homogeneity, stability, and resuspension homogeneity were conducted previously for dose formulations at 1 and 200 mg/mL following up to 15 days of room temperature storage.² During the study, samples of each test substance dosing formulation (middle stratum of each) prepared during the in-life phase were analyzed for achieved concentration.

Results of Dose Analysis

Homogeneity: Not provided

Stability: It was stated that glyphosate in 95% methylcellulose at 1 and 200 mg/mL was stable at room temperature for 15 days.

Concentration (% of nominal): 104-105%

The analytical data indicated that the variation between nominal and actual dosage to the animals was acceptable. The study referenced above should be submitted for verification of the homogeneity and stability findings.

- 6. <u>Dosage Administration</u>: Animals were administered the test formulations and/or EE or vehicle daily via oral gavage for three consecutive days in a dose volume of 5 mL/kg body weight. Dose volumes were adjusted daily based on the concurrent body weight measurement.
- 7. <u>Statistics</u>: Statistical analyses were conducted for organ weights, daily body weights, and body weight gains. Each endpoint was tested for homogeneity of variance using Levene's test. If that test was significant at p=0.01, then a log transformation was applied and

2 Haubenstricker, M.E. Analytical Validation and Stability Study of Glyphosate in Aqueous Formulations (Study No. WIL-843004). WIL Research Laboratories, LLC, Ashland, OH, 2011.

¹ Stump, D.G. A Dose Range-Finding Oral (Gavage) Toxicity Study of Glyphosate in Young Adult Rats for the Endocrine Disruption Screening Program (Study No. WIL-843001). WIL Research Laboratories, LLC, Ashland, OH, 2011.

Levene's test conducted on the transformed data. If that test was still significant, then the square root transformation was applied to the raw data and Levene's test conducted again. If the test was still significant, then a nonparametric test, as described below, was used to analyze the data. One-sided tests were conducted for uterine weights and two-sided tests were conducted for body weights and body weight gains.

For uterine weights, if variances were homogeneous, the analysis of covariance (ANCOVA), using the body weight at termination as the covariate was performed; the two groups were compared using a one-sided Dunnett's test. For body weight and body weight gain data, if variances were homogeneous, an ANOVA was performed on data; the ANOVA test was followed by a two-sided Dunnett's test. If the transformations were unsuccessful in making the variances homogeneous, the nonparametric one- or two-sided Wilcoxon rank sum test was used to compare data for the positive control to the negative control. For comparison of dose groups to the negative control, if the transformations were unsuccessful in making the variances homogeneous, the nonparametric Kruskal-Wallis test was used, followed by a one- or two-sided Dunn's test. Significance was denoted at p<0.05. Statistical analyses were performed using SAS software (version 9.2 or higher). The statistical analyses were considered adequate.

C. <u>METHODS</u>

- 1. <u>Clinical Examinations</u>: Cage-side checks for mortality and moribundity were conducted twice daily. Individual clinical observations (hand-held physical examinations) were recorded daily through termination. Each rat was also observed for signs of toxicity approximately 4 hours following dosing.
- 2. <u>Body Weight</u>: Animals were weighed at randomization, daily throughout the dosing period, and at termination. Mean body weight changes were calculated for each corresponding interval and also for the overall treatment period (Days 0-3).
- 3. <u>Food Consumption (Optional)</u>: Food consumption was not measured.
- 4. <u>Necropsy and Measurement of Uterine Weight</u>: On PND 69-70 (approximately 24 hours after final administration of the test substance), all surviving animals were euthanized by carbon dioxide inhalation and subjected to a gross necropsy. Dissection of the uterus was performed according to the U.S. EPA Guideline. Briefly, the vagina was removed just below the cervix in order to retain the luminal fluid in the uterus. The "wet" uterus (i.e., containing the luminal fluid) was weighed. Subsequently, the uterine horns were cut longitudinally and gently blotted with moist filter paper to remove the luminal fluid while preventing desiccation and the blotted uterus was weighed. The uterus and vagina were preserved in 10% neutral buffered formalin for possible future histopathologic examination.
- 5. <u>Microscopic Examination (Optional)</u>: Microscopic examinations were not conducted.

II. RESULTS

A. <u>OBSERVATIONS</u>

- 1. <u>Mortality</u>: All animals survived until scheduled termination.
- 2. <u>Clinical Signs of Toxicity</u>: No test-substance related clinical signs of toxicity were observed in animals for any dose groups. Findings noted in the treated groups were limited to observation of red material around the nose in one rat in the 300 mg/kg/day dose group on one study day.
- **B.** <u>**BODY WEIGHT AND WEIGHT GAIN:**</u> Body weight and body weight gain data are presented in Table 2. Body weights in the treatment groups were comparable to controls throughout the duration of the study. In the positive control (EE) group, mean body weights decreased (NS) on Days 3 and 4, leading to an overall body weight loss during the study of -5.6 g (p<0.01) compared to a gain of 11.3 g in the controls.

	Dose (mg/kg/day)														
Study Day #	Vel	nicle Co	ntrol	Glyphosate (100)			Glyphosate (300)			(Hyphosa (1000)		Reference Estrogen EE (0.003)		
	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD
1	6	277.0	19.2	6	277.6	14.6	6	275.2	15.6	6	278.3	15.5	6	278.7	18.8
2	6	279.7	19.5	6	282.4	15.8	6	279.2	16.9	6	282.8	16.6	6	280.2	21.1
3	6	286.4	21.1	6	288.2	16.3	6	284.8	15.5	6	287.5	16.5	6	278.2	19.4
4	6	288.3	21.0	6	292.9	16.0	6	284.3	19.4	6	291.6	17.5	6	273.2	20.9
Body Weight Gain (1 - 3)	6	11.3	3.6	6	15.3	3.0	6	9.1	5.1	6	13.3	6.0	6	-5.6**	3.4

a Data were obtained from Tables S6-S9 on pages 49-54 of the study report.

N Number of animals in the group

SD Standard Deviation

** Significantly different from controls at p<0.01

C. FOOD CONSUMPTION (Optional): Food consumption was not measured.

D. <u>PATHOLOGY</u>

1. <u>Uterine Weights</u>: Uterine weight data are presented in Table 3. Uterine weights in the glyphosate treatment groups were comparable to the vehicle controls. Absolute wet and blotted uterus weights for the positive control (EE) group were increased (p<0.01) by 758% and 256%, respectively. The increased uterine weights were within the expected range.

No macroscopic findings in the uterus were observed in the glyphosate treatment groups or the positive control group.

TABLE 3. Uterine Weights from Estrogen Agonist Assay in Sprague Dawley Rats ^a															
		Dose (mg/kg/day)													
Parameter	Vehicle Control			Glyphosate (100)			Glyphosate (300)			Glyphosate (1000)			Reference Estrogen EE (0.003)		
	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD	Ν	Mean	SD
Terminal BW	6	289	21	6	293	16	6	284	19	6	292	18	6	273	21
Wet, absolute (mg)	6	111.0	10.8	6	110.7	12.5	6	118.3	16.5	6	113.6	9.7	6	953.1** (†758)	90.4
Wet, relative (%)	6	0.038	0.0025	6	0.038	0.0056	6	0.042	0.0061	6	0.039	0.0044	6	0.352	0.055
Blotted, absolute (mg)	6	98.2	11.7	6	98.7	10.6	6	103.0	11.6	6	102.4	8.9	6	349.3** (†256)	31.1
Blotted, relative (%)	6	0.034	0.0024	6	0.034	0.0048	6	0.0.36	0.0040	6	0.035	0.0038	6	0.129	0.017

a Data were obtained from Tables S11-S14 on pages 56-59 of the study report. Percent differences from controls, calculated by the reviewers, are included in parentheses.

BW Body weight

N Number of animals in the group

SD Standard Deviation

** Significantly different from controls at p<0.01

2. <u>Microscopic Examination (Optional)</u>: Microscopic examinations were not conducted.

III. DISCUSSION AND CONCLUSIONS

- A. <u>INVESTIGATOR'S CONCLUSIONS</u>: Based on the lack of effects on mean uterine weights (wet and blotted), glyphosate did not demonstrate or mimic biological activities consistent with agonism of natural estrogens when administered orally to ovariectomized female rats at dosage levels of 100, 300, and 1,000 mg/kg/day. The positive control substance (17 α -ethynylestradiol) elicited the expected increases in wet and blotted uterine weights (8.6- and 3.6-fold, respectively).
- **B.** <u>AGENCY COMMENTS</u>: All animals survived until scheduled termination and no treatment-related clinical findings were observed in glyphosate dosed animals. Body weights, body weight gains, and uterine weights in the glyphosate dosing groups were comparable to the vehicle controls.

In the positive control (EE) group, mean body weights decreased (NS) on Days 3 and 4, leading to an overall body weight loss during the study of 5.6 g (p<0.01) compared to a gain of 11.3 g in the controls. Absolute wet and blotted uterus weights for the positive control (EE) group were increased (p<0.01) by 758% and 256%, respectively, as expected. No statistically significant changes were seen in uterine weight in this assay. Glyphosate is negative in the uterotrophic assay.

C. STUDY DEFICIENCIES: None